

AFRL-SN-RS-TR-2003-272
Final Technical Report
November 2003

EMBEDDED HIGH PERFORMANCE SCALABLE
COMPUTING SYSTEMS

Sanders, A Lockheed Martin Company

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. C201

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-SN-RS-TR-2003-272 has been reviewed and is approved for publication.

APPROVED: /s/
 RALPH KOHLER
 Project Engineer

 FOR THE DIRECTOR: /s/
 RICHARD G. SHAUGHNESSY, Lt Col, USAF
 Chief, Rome Operations Office
 Sensors Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
November 2003

3. REPORT TYPE AND DATES COVERED
Final Feb 95 – Apr 98

4. TITLE AND SUBTITLE

EMBEDDED HIGH PEFORMANCE SCALABLE COMPUTING SYSTEMS

6. AUTHOR(S)

David Ngo

5. FUNDING NUMBERS
C - F30602-95-2-0013
PE - 62301E
PR - C201
TA - 01
WU - P1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Sanders, A Lockheed Martin Company
PO Box 868
Nashua, NH 03061-0868

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA AFRL/SNRT
3701 North Fairfax Drive 26 Electronic Pky
Arlington, VA 22203-1714 Rome, NY 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-SN-RS-TR-2003-272

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Ralph Kohler, SNRT, 315-330-2018, kohlerr@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement
between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 95 – Apr 98. The focus
of the EHPSCS research program was on the development of a highly integrated, scalable multiprocessing architecture
based on leading COTS technologies for environmentally constrained applications. The program developed an 11
GFLOPS embedded processor hardware/software testbed and software development tools to facilitate technology
transfer, an advanced packaging insertion approach, and a second generation microarchitecture – the ReConfigurable
Transport Engine.

15. NUMBER OF PAGES
80

14. SUBJECT TERMS
Automatic Target Recognition, Synthetic Aperture Radar, Digital Signal Processing (DSP),
Two-Level Multicomputer Architecture, Myrinet LAN protocol, Message Passing Interface
(MPI)

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

Table of Figures .. iii
List of Tables .. iv
Abstract ...1
1 The Need..2
2 Objective ..2
3 Approach..3
3.1 EHPSC Two-Level Multicomputer Architecture ..3
3.2 Myrinet Overview..5
3.3 Testbed Development Approach..6
3.3.1 Hardware Development Approach ..8
3.3.2 Software Development Approach..9
3.4 Software Tools Approach ..12
3.5 ReConfigurable Transport Engine (RCTE) Approach ..13
4 Progress..14
4.1 Multicomputer Testbed Development ...16
4.1.1 Arithmetic Processing Unit Development ...17
4.1.2 EHPSC Backplane Development...18
4.1.3 Myrinet Topology Expansion Module Development ..20
4.1.4 Distributed Architecture Resource Controller Development.................................21
4.1.5 Data Synchronization Queue Development...23
4.1.5.1 Data Sets ..23
4.1.5.2 Queueing and Synchronization ..26
4.1.5.3 DSQ Performance Characterization...30
4.1.6 Testbed Benchmark Application Demonstration...34
4.1.7 Message Passing Interface Development...34
4.1.8 Advanced Packaging..37
4.1.8.1 Embedded DSP MultiChip Module Development ..38
4.1.8.2 DRAM MultiChip Module Development..40
4.1.8.3 Low Power DSP MultiChip Module Development ...42
4.1.9 Technology Transition and Insertion ...45
4.1.9.1 STAP Insertion Program..46
4.1.9.2 AN/UYS-2A Insertion Program ..46
4.1.9.3 ACP Insertion Program..46
4.1.9.4 UUV Insertion Program...47
4.1.9.5 P507 Insertion Program ...47
4.2 Software Tools ...47
4.2.1 Multiprocessor Debugger...47
4.2.2 Profiling Tools ...48
4.2.2.1 Nupshot ..49
4.2.2.2 ParaGraph ..50
4.2.3 Architectural Simulation and Analysis ..50
4.2.3.1 Ptolemy ..51
4.2.3.2 RAMP (Real-time Algorithm Mapper and Performance analyzer)54

ii

4.3 ReConfigurable Transport Engine (RCTE) ...54
4.3.1 RCTE Concept Overview ..54
4.3.2 RCTE Microarchitecture..55
4.3.3 RCTE Hardware...58
4.3.4 RCTE Software..61
4.3.5 RCTE Performance..64
4.3.5.1 RCTE Latency Performance ..64
4.3.5.2 RCTE Power Performance...69
5 Summary ..70
6 Acronyms...71
7 Attachment Listing...73

iii

Table of Figures

Figure 1: Embedded High Performance Scalable Computing Architecture Concept3

Figure 2: EHPSCS Two-Level Multicomputer Architecture Concept....................................4

Figure 3: EHPSCS Multicomputer Architecture Concept...6

Figure 4: EHPSCS Software Philosophy ..7

Figure 5: EHPSCS Scalable Multicomputer ...8

Figure 6: Prototype Embedded EHPSCS Testbed...11

Figure 7: Levels of EHPSCS Embedding ...12

Figure 8: EHPSCS Testbed Functional Block Diagram..15

Figure 9: EHPSCS Testbed Photo...16

Figure 10: EHPSCS Arithmetic Processing Unit Block Diagram...17

Figure 11: EHPSCS Arithmetic Processing Unit ..18

Figure 12: EHPSCS Testbed Backplane SHARClink Connectivity19

Figure 13: EHSPCS Testbed Myrinet Connectivity..20

Figure 14: EHSPCS Myrinet Topology Expansion Module ...21

Figure 15: DARC Software Top-Level Block Diagram..22

Figure 16: Data Set Organization ..24

Figure 17: One Data Synchronization Queue..27

Figure 18: DSQ Runtime Environment...28

Figure 19: Scatter/Gather Data Flow Synchronization ...30

Figure 20: EHPSCS Program Load...31

Figure 21: Program Load Characterization ...31

Figure 22: Synchronization Functional Comparison...32

Figure 23: DSQ Total Data Transfer and Synchronization Latency Measurements...............33

Figure 24: DSQ Total Data Transfer and Synchronization Latency Measurements...............33

Figure 25: Implementation-specific Layering ...35

Figure 26: MPI Latency Characterization ...36

Figure 27: MPI bandwidth Characterization ...36

Figure 28: 5V Embedded DSP Multichip Module ..38

Figure 29: EHPCSC 5V Embedded DSP MCM – Baseline HDI side view39

Figure 30: EHPSCS 5V Embedded DSP MCM..39

Figure 31: EHPSCS DRAM Multichip Module Block Diagram ..40

iv

Figure 32: EHPSCS MCM/Flex Technology..41

Figure 33: EHPSCS DRAM Multichip Module Photo ...42

Figure 34: Tile-Based MCM-F Technology Side View..43

Figure 35: EHPSCS 3V Processing Node Functional Block Diagram43

Figure 36: 3V DSP Processing Node MCM..44

Figure 37: Nupshot Profiler...49

Figure 38: ParaGraph Profiler ...50

Figure 39: Myrinet Performance Modeling Stars..51

Figure 40: Simple Myrinet Modeling Example...52

Figure 41: Gantt Tool Display of Simple Myrinet Modeling Example53

Figure 42: ReConfigurable Transport Engine Concept...55

Figure 43: ReConfigurable Transport Engine Network Controller...56

Figure 44: RCTE Motherboard Block Diagram..57

Figure 45: Multicomputer Interface Comparison..58

Figure 46: RCTE Motherboard and SHARC Daughter Card Assemblies59

Figure 47: Quad SHARC Daughter Card Functional Block Diagram60

Figure 48: Sun Host Utility Program Static Table Generation..61

Figure 49: RCTE RAM Table Load..62

Figure 50: Data set Roundtrip ...62

Figure 51: RCTE Message Passing Characterization..65

Figure 52: RCTE Latency Measurement Timeline ...65

Figure 53: Ratio of APU Total Latency to RCTE Total Latency..68

Figure 54: RCTE/APU Latency and Bandwidth Comparison ..69

Figure 55: RCTE/APU Power Comparison ..70

List of Tables

Table 1: EHPSCS Technology Insertion Programs ...45

Table 2: RCTE Total Latency Measurements..66

Table 3: APU Total Latency Measurements..67

1

Abstract

The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a
contractual cooperative agreement between Sanders, a Lockheed Martin Company and the
Defense Advanced Research Projects Agency (DARPA) that ran for three years, from April 1995
to April 1998. The focus of the EHPSCS research program was on the development of a highly
integrated, scalable multiprocessing architecture based on leading COTS technologies for
environmentally constrained applications. The program developed an 11 GFLOPS embedded
processor hardware/software testbed and software development tools to facilitate technology
transfer, an advanced packaging insertion approach, and a second generation microarchitecture –
the ReConfigurable Transport Engine.

2

1 The Need

The Defense Advanced Research Projects Agency (DARPA) has a defined need to leverage and
enhance the commercial scalable High Performance Computing (HPC) technology base for a
wide range of embedded military and defense applications. Applications such as Automatic
Target Recognition and Synthetic Aperture Radar require tera-ops per second of processing
power and gigabytes per second of I/O throughputs. In addition, advanced embedded system
developments require a cost-effective environment which provides performance models for
critical system analysis and trade decisions, architecture and tools framework to accelerate
application development, and embedded resource building blocks to accelerate system
implementation. The EHPSCS program has addressed these needs.

2 Objective

The main objective of the EHPSCS program was to develop innovative embedded scalable
multicomputer solutions based on leading COTS technologies that will support a diverse set of
military applications and requirements. These requirements include a wide range of processing
power, memory capacity, and resource types that necessitate scalability to address these ranges.
Operating environments can range from land to air to space, while volume allocation can range
from cubic feet to cubic inches. Lastly, these applications require heterogeneous resource
support for flexibility, application-specific requirements, and insertion of next-generation
technology to fully maximize size, weight, and performance.

As part of the main objective, the program was to develop a multicomputer hardware/software
architecture to meet the wide-ranging requirements and would do so while leveraging as much
commercial technology as possible to ease usability and application development and reduce life
cycle costs. Finally, this technology was to be demonstrated and transitioned to application
programs and to the commercial HPC community.

Specifically, the EHPSC program objectives were to:

• Perform architecture design and analysis of the EHPSCS two-level multicomputer concept.

• Demonstrate architecture development tools.

• Implement a scalable, embedded hardware/software multicomputer functional testbed based
on leading COTS technology.

• Demonstrate and benchmark an insertion application algorithm running on the multicomputer
functional testbed.

• Investigate and implement advanced packaging concept for embedded application transition
of the EHPSCS technologies.

• Develop and demonstrate the ReConfigurable Transport Engine (RCTE) for next-generation
application requirements.

• Develop and deliver a COTS-based multicomputer debugger.

3

3 Approach

The Embedded HPSCS research program will combine advanced Digital Signal Processing
(DSP), multicomputing, software, and packaging technologies to produce a prototype testbed
system for use in a variety of defense and commercial applications that require high processing
and I/O bandwidth in environmentally constrained configurations. The testbed will be
architected to make use of the latest in commercial technologies to provide scalability via a
switched network and an innovative software architecture. Advanced packaging technologies
will be investigated to not only address size, weight, and power, but to also address cost and
reusability. These technologies will be demonstrated and made available for commercialization
as well as to application programs.

3.1 EHPSC Two-Level Multicomputer Architecture

To support such wide-ranging objectives, the EHPSCS program has adopted an architecture
approach that is based on a two-level multicomputer concept. This architecture must support
applications requiring GOPs of aggregate processing throughput and provide real-time network
connections across a scalable number of heterogeneous resources. A typical scalable system is
shown in Figure 1.

A processing system based on the EHPSCS architecture can be viewed as a single machine that
contains multiple functionally cohesive subsystems. The subsystems are networked by a loosely
coupled real-time network. Real-time, real-world signals enter and exit the EHPSCS system on
the Sensor and Downlink subsystems. The Processor and Memory subsystems are required to
execute the algorithms. Each subsystem is in turn composed of a variable number of nodes, and
each node has an input and output connection to the network.

Under the two-level architectural concept, the first-level computer, which is the network
interface controller (NIC), is separate from the second-level computer, which is an application
processor. Each level is implemented with its own complete hardware and software layer that is
decoupled from the other. This encapsulation of the real-time network I/O functions permits
native resource operating system (OS) and tools support and increased resource efficiency by
eliminating the need to handle network traffic. The result is a resource fully dedicated to the
execution of the user application which increases the effective throughput efficiency of the
multicomputer system.

Figure 1. Embedded High Performance Scalable Computing Architecture Concept

Signal
Processing

Signal
Processing

Data
Processing

Data
Processing

Reconfigurable
Computer DSP RISC

Leading COTS Heterogeneous Technology Based

Future
Resources
Future

Resources
Mass

Memory
Mass

Memory

Input
Sensors
Input

Sensors

Spare NodeSpare Node

Scalable System Area Network Uplink/Crosslink/
Downlink

Uplink/Crosslink/
Downlink

Pre-processingPre-processing

4

The application processor is also sometimes referred to as a resource. Note that the term
“resource” referred to in this document can be of any system functionality such as a compute
resource, a sensor interface, memory, etc. The EHPSCS two-level architecture concept is shown
in Figure 2.

A conscious effort was made during the architecture design phase of this program to adopt an
open architecture based on COTS components and avoid a proprietary system. This was
achieved with the two-level multicomputer concept in concert with a COTS-based, switched
network interconnect. Several attributes result from this COTS-based, two-level architecture. It
is scalable, meaning that resources can be added or subtracted from the network based on
application needs. It is expandable, permitting a heterogeneous system. It is flexible, meaning
different applications can run on the same hardware. It is modular, such that each resource node
is an independent computer that can be combined to form a flexible system configuration. And
lastly, application software is portable allowing development and execution on multiple,
different platforms thus preserving the investment made in software development as the
hardware evolves or changes. These features will be discussed in more detail in the following
sections.

Figure 2. EHPSCS Two-Level Multicomputer Architecture Concept

• Network I/O layer is responsible for all
network I/O services and data
synchronization

• Interface layer between network I/O and
application is accomplished by passing
data sets

• Application layer is dedicated to
application processing

• Network I/O function is decoupled from the application

• Network I/O - Application interface partition simplifies third party tools
support and new application processor integration

• Expensive application processor is optimally utilized

• Network I/O function is decoupled from the application

• Network I/O - Application interface partition simplifies third party tools
support and new application processor integration

• Expensive application processor is optimally utilized

Myrinet
(LANai)

Memory

Application
Processor
(Resource)

Myrinet
Control

Program

Input/Output
Data Sets

Application
Program

Hardware Software

5

The hardware function in the NIC is based on the LANai network interface chip from Myricom.
The LANai is a RISC based NIC chip that provides the network processor and protocol interface
to the Myrinet network. The network software function is implemented by a Myrinet Control
Program (MCP) which is executed by the LANai. The MCP network software in the EHPSCS
architecture is called the Data Synchronization Queue (DSQ). The LANai and DSQ are
combined to provide the real-time scalable network solution for embedded system application.
The network function is fully isolated from the application layer to offer maximum portability in
support of diverse processing resources. The application processor was chosen based on leading
COTS DSP microprocessor technology. The DSP compute node is currently based on the 21060,
a representative state-of-the-art DSP technology from Analog Devices, Inc.

3.2 Myrinet Overview

Myrinet is a high-performance, packet-based switched network that is the preferred network for
the EHPSC program. The Myrinet was developed under previous DARPA sponsorship to
advance the embedded high-performance computing technology base.

Each Myrinet link is bidirectional and full duplex providing 160 Mbytes/sec in each direction.
Low-latency cut-through crossbar switches of up to 16 ports provide scalability across the
network. Unlike other networks that share a communication medium, the aggregate throughput
of the Myrinet increases as the network scales up in size. The Myrinet switching technology
provides scalability and a uniform processor interconnect at multiple levels in the architecture:
from board level to backplane to System Area Network (SAN) and Local Area Network (LAN).

Myrinet exists in two protocols – a SAN protocol for board-level and backplane-level
communication and a LAN protocol for system-to-system and longer distance communication.
Each protocol provides flow control and error control on each port.

Any network topology is allowed. The single-port interfaces and multiple-port switches may be
connected by links in any network topology, including networks that provide redundant paths for
performance and fault tolerance. The Myrinet interfaces map the network, and use whatever
paths are available from host to host. Myricom provides board support software tools for
interfacing host platforms with embedded Myrinet topologies and Sanders has built on these
tools to provide board support software for the EHPSCS APU.

Myrinet packets may be of any length, and thus can encapsulate other types of packets, including
IP packets, without an adaptation layer. Each packet is identified by type so that a Myrinet, like
an Ethernet, can carry packets of many types or protocols simultaneously. Thus, a Myrinet
supports several software interfaces.

Myrinet building blocks consist of four basic components. These are the LANai, the crossbar
switch, the Myrinet Interface (MI) and the FIFO Interface (FI). The LANai and the crossbar
switch have been described, previously. The MI chip provides the electrical conversion between
the SAN protocol and the LAN protocol. The FI chip is basically the SAN interface subset of
the LANai. It interfaces directly to a SAN port and consists of a SAN protocol interface on one
end and a parallel FIFO interface on the other.

6

For more detailed information on the Myrinet network, refer to either Myricom’s web site at
www.myri.com or the attachment, High Performance Scalable Computing Distributed Architecture
Resource Controller Technical Reference, Revision 1.1.

3.3 Testbed Development Approach

A major objective of the EHPSCS program is to develop a scalable, embedded
hardware/software multicomputer functional testbed based on leading COTS technology.

This functional testbed is the hardware and software realization of the two-level multicomputer
architecture concept described in Section 3.1.

The approach taken in the hardware implementation was to leverage as much from leading edge
commercial technologies and develop what was necessary to demonstrate the architectural
concept and promote future technology insertion. The Analog Devices Super Harvard
Architecture (SHARC) 21060/62 processor was used as the core commodity processor for
clusters of multiprocessing nodes which will be linked by an embedded Myrinet switching
network to enable scalable low latency, high bandwidth interprocessor communication. In
addition, a transition path to highly constrained embedded applications was developed and
demonstrated with advanced packaging research on the testbed hardware.

Signal
Processing

Signal
Processing

Data
Processing

Data
Processing

Reconfigurable
Computer DSP RISC

Leading COTS Heterogeneous Technology Based

Future
 Resources

Future
 Resources

Mass
Memory
Mass

Memory

Input
Sensors
Input

Sensors

CSI

Spare NodeSpare Node

Scalable System Area Network Uplink/Crosslink/
Downlink

Uplink/Crosslink/
Downlink

Pre-processingPre-processing

Seamless Transition of Advanced Algorithms

Workstation Cluster

System
Area

Network

System
Area

Network

WS WS

WS

WS
WS

SAN

WS

SAN

WS

SAN

Target Hardware

Advanced Packaging

Figure 3. EHPSCS Multicomputer Architecture Concept

7

The underlying software philosophy was to provide a suite of visualization tools to support the
development of low latency real-time, complex large scale applications. This philosophy offers
the system application developer an environment independent of the underlying resources and
network interconnect of the two-level multicomputer. The testbed enables portability, reuse, and
target interoperability of advanced signal processing algorithms such that they can be developed
in a workstation environment and transitioned seamlessly to real-time systems. The
development environment includes tool sets for system architecture analysis and profiling,
multiprocessor debugging, and a variety of resource compilers, linkers, and real-time kernels.

Visual Architecture Prototyping Environment

SHARC PowerPC CHAMP Other

System Area Network

Data Base Data Base

Data Base

Khoros, Paradise, MatLab

Visual Algorithm Development Environment

Doppler
Processing

Beamforming
processing

Pulse
Compression

CFAR
Processing

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3 Stage 4

Signal Processing Hardware System

Visual Interactive Allocation Environment

 Stage 1 Stage 2 Stage 3 Stage 4

 Ptolemy
 VHDL

Performance Simulation and Modeling

The goal is to provide a suite
of visualization tools to
support the development of
low latency real-time, large
scale, complex systems

Target Hardware and Software

CHAMP SHARC DRAM PowerPC

Figure 4. EHPSCS Software Philosophy

The selected application environments for the EHPSCS APU boards include workstations,
commercial and ruggedized VME-based systems, and highly constrained real-time systems, such
as missiles, radars, sonars, infrared search and track (IRST), and other dual-use systems. The
common link between these diverse applications is the integrated modular hardware, software,
interfaces, and design/debug tools.

Validation of the architectural concept was done with a demonstration of the functional testbed
consisting of the processing-intensive Householder matrix transformation function that is part of
the Space-Time Adaptive Processing (STAP) algorithm.

8

Upon validation, testbeds were produced and made available to the High Performance
Computing community and its programs to support various system application developments.

3.3.1 Hardware Development Approach

The hardware development objectives under the EHPSCS program were to demonstrate the two-
level multicomputer architecture concept implementation. Another objective was to develop an
advanced packaging concept for embedded application transition of these technologies.

The approach taken for demonstration purposes was to leverage leading edge technology in the
implementation of the two-level multicomputer. The Analog Devices SHARC 21060/62
processor was used as the core commodity processor for clusters of multiprocessing nodes which
is linked with an embedded Myrinet switching network to enable scalable low latency, high
bandwidth interprocessor communication. This concept is shown in Figure 5. EHPSCS Scalable
Multicomputer. Two processing nodes, each consisting of a SHARC cluster and LANai Myrinet
interface, were implemented on a single 6Ux160 VME eurocard form factor in the first
realization of the two-level multicomputer, the Arithmetic Processing Unit (APU).

The complete EHPSCS testbed contains hardware in addition to the APU. A backplane was
needed for network-level connectivity across APU modules. An adherence to COTS standards
as much as possible drove the backplane with VME form-factor constraints for use in a COTS
chassis. The backplane provides scalability within a chassis, but to expand on a system level and
for communication with the workstation host a transition module was developed to support the
Myrinet LAN protocol, for interchassis connectivity. The Myrinet Topology Expansion Module
(MTEM) was developed to translate the SAN network-level connectivity across the backplane to
the interchassis LAN protocol to scale from system to system. These components, in an industry
standard, rack-mountable, 19-inch chassis, make up a complete hardware testbed.

ResourceResource

MemoryMemory

LANai
Network interface

LANai
Network interface

ResourceResource

MemoryMemory

LANai
Network interface

LANai
Network interface

ResourceResource

MemoryMemory

LANai
Network interface

LANai
Network interface

ResourceResource

MemoryMemory

LANai
Network interface

LANai
Network interface

Network
Crossbar

Switch

Network
Crossbar

Switch

Network
Crossbar

Switch

Embedded realtime
multicomputer

Figure 5. EHPSCS Scalable Multicomputer

9

The program investigated several advanced packaging concepts to not only demonstrate a
version of the APU for highly constrained applications, but to address cost, power, and reuse
issues. A low-cost High Density Interconnect (HDI) packaging technology, developed by
Sanders, a Lockheed Martin Company and GE Corporate Research & Development allows a
complete processing node, containing four SHARC processors, 3 MB RAM, and a Myrinet
interface, to be implemented on a single 5 cm x 8 cm multi-chip module (MCM) package. For
embedded applications, four MCMs can be implemented on a 6U x 160 VME eurocard form
factor board, providing a total of 2 GFLOPS (or 43 MFLOPS/in3) of peak performance on a
single card slot. Leading edge HDI derivative technologies were used to experiment with
subtile-based advanced packaging to investigate cost reduction, reuse of subtiles, and testability
of non-known good die.

3.3.2 Software Development Approach

The software architecture approach for the EHPSCS program was to extend the full potential of
the two-level multicomputer concept to enable system scalability, heterogeneous computing,
fault tolerance, and innovative tools with industry standard support. To accomplish the scalable
communication, high-performance, low-overhead software goals, an industry standard
Application Programming Interface (API) was chosen for the program. The preferred API was
Message Passing Interface (MPI).

The MPI specification for embedded applications was not finalized in time for the EHPSCS
functional demonstration schedule. Therefore, Sanders continued on a parallel effort in the
development of Data Synchronization Queues as an alternative to MPI for the demonstration and
validation of the two-level multicomputer concept for embedded applications.

The other half of the parallel effort was the port of MPI to the EHPSCS testbed. Sanders
Advanced Common Processor program worked cooperatively with the EHPSCS program in a
research and development effort to port MPI and integrate MPI-based tools into the EHPSCS
testbed. These efforts led to a series of realistic application demonstrations on the testbed for a
more robust validation and application insertion opportunity for the EHPSCS technology.

A key attribute of this software architecture approach is to provide for a real-time network-level
kernel that is free from node-specific operating system dependency. This is accomplished
through a high performance, highly compact data synchronization kernel (referred to as DARC)
that resides at the network layer of the two-level multicomputer architecture, shown in Figure 2.

DARC (Distributed Architecture Resource Controller) is a network runtime environment
optimized for real-time parallel processing. In the context of the embedded EHPSCS program,
DARC utilizes the Myrinet and its underlying control fabric of switches and flow control for
point-to-point packet communication between network nodes. DARC executes on Myricom’s
LANai chip. The LANai forms the interface between Myrinet and each node. DARC has a
front-end that interfaces directly to Myrinet for sending and receiving Myrinet packets and a
back-end that interfaces directly to a node for resource control and data flow. The front-end
validates incoming packets as DARC packets and hands them off to the back-end for processing.

10

Packets are generally of two types: resource control and data set. The portion of the back-end
that handles resource control packets is very closely coupled to the hardware implementation of
the node providing such functions as program loading and node debugging. The portion of back-
end that handles the data set packets implements a unique parallel processing data-flow model
called Data Synchronization Queues (DSQ).

The DSQ model represents an innovative data-flow approach to multiprocessor program
development as opposed to the mainstream distributed control and shared memory approaches
commonly employed by distributed real-time operating system (RTOS) kernels. With a
distributed Real-time Operating System (RTOS), processors typically share memory and
coordinate and synchronize their use of the shared memories through global semaphores. With
DSQ, all data partitioning, data flow, and data synchronization information is encapsulated into a
set of DSQ data structures that completely define how the processors will communicate at
runtime. This approach lends itself well to a visual development environment for complex high-
performance signal processing applications where a graphical user interface can automatically
generate the DSQ data structures as they are interactively mapped by the user onto a network
architecture.

Together, Myrinet, DARC, and DSQ form a network operating system for multiprocessor
applications in the sense that together they manage all of the network nodes and resources,
ensuring data flow direction, integrity, coherence, and timeliness without the need for processor-
oriented operating systems. This allows the application programmer to concentrate on the
computational aspects of a multiprocessor program without having to deal with the complexities
of data flow and synchronization. Likewise, the nodes are spared the overhead of a distributed
RTOS kernel, allowing more of each node’s resources to be dedicated to the algorithm.

Figure 6 is an architectural decomposition of the prototype embedded EHPSCS testbed that
utilizes the APU and SUN nodes. In this figure, each node is decomposed to illustrate the major
hardware and software functional blocks and interfaces that comprise each node. The closely
coupled shared memory interfaces within a node represent the first level in EHPSCS multi-
computing and the loosely coupled Myrinet interface represents the second level in EHPSCS
multi-computing. At the network interface is the LANai chip (it is referred to by Myricom as a
chip and not a processor because it contains a processor and interface circuitry) that executes the
DARC runtime and performs DSQ data flow. Layered between each node application program
and the network is a Resource Network Interface (RNI) component. From the network point of
view, a node contains a number of resources. For a resource to use the network, an RNI
component must be created for that node.

11

Myrinet

SUN Node
(a Host

Node Type)

APU Node
(a Processor
Node Type)

Sparc
Shared

Memory LANai SHARCShared
MemoryLANai

SUN
Application

SUN
RNI

APU
Application

APU
RNIDARC & DSQ

System View

Hardware View

Software View

Figure 6. Prototype Embedded EHPSCS Testbed

The focus of this description is not on specific Myrinet nodes but on the enabling runtime
environment that binds them into a network. Therefore, the focus is on the DARC control and
DSQ data-flow software that spans the Myrinet from one LANai to another as illustrated in
Figure 6.

A final note on terminology. The Myrinet connects nodes (the first level in multi-computing).
Nodes in turn connect resources (the second level). Nodes can use their own resources (via level
2) or they can use resources on other nodes (via level 1). The term module encompasses the
embedded aspect of the EHPSCS program. The distinction of a module is important because
modules (circuit boards) plug into the embedded EHPSCS backplane that provides module-to-
module Myrinet connectivity. One module may consist of multiple nodes interconnected on the
module with Myrinet. For example, an APU module contains two APU nodes. Each APU node
is further decomposed into a set of APU resources (LANai, SHARC1, SHARC2, etc.) as shown
in Figure 6. Figure 7 illustrates all of these levels of EHPSCS embedding.

12

Resource Resource

Node

Resource Resource

Node

Module

Resource Resource

Node

Resource Resource

Node

Module

Chassis

B
ac

kp
la

ne

Figure 7. Levels of EHPSCS Embedding

In summary, the successful integration of Myrinet, DARC, DSQ, and the SUN and APU nodes is
the primary software approach. A successful demonstration will result in the insertion of
EHPSCS technology into COTS products in an effort to establish new standards in the area of
embedded high performance computing.

3.4 Software Tools Approach

In keeping with the thrust of leveraging COTS technologies, the EHPSCS program integrated a
set of commercially available system design, simulation, and profiling tools that would lead to a
seamless path from algorithm implementation on workstations to real-time system operation on
the EHPSCS testbed. Sanders has taken advantage of multiple ongoing DARPA-sponsored and
academia developments to achieve an integrated environment to capitalize on successful High
Performance Computing tools for application development, analysis and characterization,
modeling and simulation, as well as software development.

Numerous COTS technologies and government-funded university research technologies have
been integrated at Sanders to form the EHPSCS software development tool suite. The current
EHPSCS APU reference implementation for the EHPSCS program utilizes the SHARC
manufactured by Analog Devices, Inc. (ADI). ADI and other COTS vendors provide various
SHARC-based development tools including compilers, multi-processor (MP) kernels, and
emulators/debuggers.

13

Myricom provided board support software tools for interfacing host platforms with embedded
Myrinet topologies and Sanders built on these tools to provide board support software for the
EHPSCS APU.

Application programs targeted for execution on the multi-computer testbed were linked with
libraries that provide the communication and DSP components required for runtime execution of
massively parallel signal processing applications. For the communications library, the emerging
Message-Passing Interface (MPI) standard (and implementations derived from that standard)
were leveraged as a cost-effective solution. The MPI standard was developed under government-
funded research programs at several cooperating universities and laboratories. MPI provides a
common application program interface (API) for parallel programs ported between workstation
clusters and embedded parallel machines. For the DSP library, a COTS implementation
optimized for the SHARC and integrated onto the multi-computer testbed was used.

Rounding out the EHPSCS software development tool suite are a set of performance simulation
and performance profiling tools. Again, existing public domain research programs were
leveraged to provide these capabilities as a cost-effective solution.

Software from the Ptolemy project at the University of California at Berkeley was transferred
and demonstrated as the EHPSCS multi-computer performance analysis tool. This software
environment provides a performance simulation capability to model EHPSCS architectures on
embedded Myrinet topologies. Two performance profiling tools based on MPI, Nupshot and
ParaGraph were also transferred to the EHPSCS multi-computer testbed. Both Nupshot and
ParaGraph are graphical program visualization tools for message-passing parallel computers.
Nupshot was developed at Argonne National Laboratory and ParaGraph was developed at Oak
Ridge National Laboratory.

3.5 ReConfigurable Transport Engine (RCTE) Approach

In the second half of the EHPSCS program, the baseline two-level multicomputer architecture
was extended to specifically address multiple next-generation application challenges. Key
challenges included technology-neutral support and hard real-time performance for wide range
support of high-performance applications. Technology-neutral support enables continuous
technology refresh and flexible system application through ready-insertion of the latest COTS
technologies. Improvements in the hard real-time performance address applications with finer-
grain performance requirements such as the STAP insertion program. The key objective of the
RCTE design was to implement the extended architecture features in a prototype for
characterization and concept validation.

The RCTE prototype design fully leveraged the development effort of the DARPA-sponsored
Digital MicroArchitectures (DMA) program in 1996. Under the DMA program, Sanders
designed the Common Logic Frame (CLF) network interface microarchitecture. This
microarchitecture defined a set of approaches that were adapted for the RCTE prototype. These
approaches included a hardware-based network protocol acceleration engine, zero-copy message
passing, and reconfigurable network and resource interfaces to support different COTS
technologies.

14

The RCTE prototype is based on a low-cost commodity RISC engine combined with field-
programmable gate-array (FPGA) technology and a Myrinet network protocol interface to
demonstrate reconfigurability in network interface and technology independent supports. The
RCTE prototype interfaces to the existing EHPSCS testbed environment to facilitate test and
integration and characterized for hard-real-time performance application. The approach for the
RCTE under the EHPSCS program was to functionally test and validate the hardware prototype
and demonstrate and characterize performance that can be compared to similar measurements on
the LANai-based APU.

4 Progress

The EHPSCS hardware/software functional testbed system along with a released software
development tools environment and documentation provided insertion program users with a
complete operating environment for advanced application developments requiring scalable high
performance computing technology. To date, Sanders has delivered 14 EHPSCS testbed systems
which include 70 APUs and 18 MTEMs, to multiple insertion programs including UYS-2A,
STAP, ACP, UUV, P507, and SHARE. Significant progress has been made by the insertion
program users to date in the porting and mapping of advanced algorithms on the EHPSCS
platform. Examples of insertion accomplishments include the successful demonstration of a 64-
processor EHPSCS system for space-time adaptive processing in May, 1997 by the STAP
program as well as the detection and tracking algorithms running in the SAR, EO, and IR
processing domains of the ACP project.

The EHPSCS testbed system developed under the EHPSCS program is an expandable
configuration providing up to 11 GFLOPS peak performance using 1 to 11 EHPSCS APU
modules. As Figure 8 shows, the EHPSCS functional testbed consists of the following
components:

• Standard 20-slot VME chassis with 13-slot EHPSCS backplane section and 6-slot standard
VME backplane section for support of COTS product options.

• Arithmetic Processing Unit (APU) with low-cost 6U-160 implementation using discrete
components; SHARC-based, dual-node capability providing 960 MFLOPS peak
performance; on-board 128 Mbyte memory expansion; on-board Myrinet 8-port network
switch; four Myrinet ports on the backplane connector; two Myrinet SAN ports on the
faceplate; on-board boot support, and JTAG support.

• Myrinet Topology Expansion Module (MTEM – refer to Section 4.1.3), which provides
Myrinet topology expansion within the EHPSCS backplane configuration and external to the
backplane for additional EHPSCS chassis and/or workstations. The MTEM also provides
redundant network configuration support within the EHPSCS testbed. Four Myrinet LAN
protocol ports are provided by each MTEM board.

• System software and application development environment with Sun workstation host
support over a common Myrinet network, a high-performance network kernel based on the
Data Synchronization Queue (DSQ) technique, Myrinet system boot-up support, system
application analysis and development tools, SPOX-MP COTS kernel support, and SHARC
target development tools.

15

25-Meter
Myrinet

Connection

LANai

Sparc10

EZ LAB

EZ ICE

JTAG

SHARC
Link

PC

Targeted Host Environment for
HPSC Demonstration

Direct Environment for
H/W Test

Bulkhead

D1 D2

D3 D4

D5 D6

D7 D8

DRAM DRAM

LANai LANai
Root

25
Meter
Buffer

25
Meter
Buffer

D1 D2

D3 D4

D5 D6

D7 D8

DRAM DRAM

LANai LANai
Root

25
Meter
Buffer

25-M Conn

25
Meter
Buffer

Bulkhead Bulkhead Bulkhead

APU Modules
Myrinet Topology

Expansion Module

APU Modules
Myrinet Topology

Expansion Module

25-M Conn

13-Slot HPSC Myrinet Interconnect Backplane -- 2 Hops Max / Redundant Topology

Optional VME
Modules

20-Slot Standard VME Chassis

Optional VME
Modules

6-Slot Standard VME Backplane

1M 1M

Figure 8. EHPSCS Testbed Functional Block Diagram

The functional demonstration was completed in June 1996. The demo consisted of the
processing-intensive Householder matrix transformation function that is part of the Space-Time
Adaptive Processing (STAP) algorithm. The Householder function was allocated to a parallel
SHARC processor node on an APU module. Real-time sensor data sourcing is simulated by a
second node with data routed through the Myrinet network. The functional demonstration
validated the EHPSCS two-level architectural concept, the functional testbed hardware and
software designs, and the software development tools.

In October 1996, the eMPI version for resource-constrained systems was also demonstrated on
the EHPSCS testbed under the coordinated research and development effort with the ACP
program using an industry standard API. The EHPSCS MPI implementation offers EHPSCS
users direct portability of advanced applications developed under workstation or supercomputer
environments to the EHPSCS parallel target environment.

In November 1995, Sanders demonstrated the first advanced packaging development with the 5V
Embedded DSP Multichip Module, which provided a path for insertion of the EHPSCS
technologies into highly constrained applications. That was followed in November 1996 by the
completed design of the 3-volt version of the 480-MFLOPS node design targeted for MCM
packaging. The 3-volt design is essential in reducing system power consumption for large
computation system applications and can be transitioned to system application with aggressive
processing density requirements. The 3-volt design was also the basis of an MCM exercise to
evaluate tile-based packaging concept completed in July 1997.

In July 1997, an alpha version of a Multi-Processor Source Debugger based on Dolphin
Interconnect Solutions' TotalView commercial tool was demonstrated on the EHPSCS testbed.
TotalView is a leading COTS MP source-level debugger product. The integrated TotalView
capability offers EHPSCS users a highly productive network-based multi-processor debugger

16

environment. Also integrated into the EHPSCS tool suite is the commercial White Mountain
DSP SHARC Emulator tool which provides EHPSCS users with a high degree of flexibility in
choosing a preferred debug environment.

In April 1998, the RCTE network interface controller prototype was completed and characterized
to validate the microarchitecture concept and to demonstrate reconfigurability and hard real-time
performance improvements.

The sections that follow describe in detail the progress of each development effort for the
EHPSCS program.

4.1 Multicomputer Testbed Development

A first-generation EHPSCS hardware/software functional testbed using discrete components was
completed in June 1996. The EHPSCS functional testbed provides up to 11 GFLOPS of peak
performance in a single COTS VME chassis using eleven APU modules.

The testbed consists of a standard 20-slot 6Ux160 VME chassis with a 13-slot EHPSCS
backplane section and a 6-slot standard VME backplane section for support of COTS product
options. This backplane and chassis are available from a variety of commercial vendors. The
EHPSCS backplane is a 13-slot backplane providing mainly Myrinet and SHARClink
connectivity for up to 11 APU cards and 2 MTEM cards. The combination of the two
backplanes offers maximum network throughput, an open architecture, and COTS module
support. The testbed is shown in Figure 8 and Figure 9.

Figure 9. EHPSCS Testbed Photo

17

The typical development configuration for the testbed is a quantity of APU boards combined
with at least one MTEM card and a host computer. The MTEM card provides a LAN connection
to the host computer equipped with a Myrinet interface card. The host can be a workstation or a
VME single-board computer and provides a host environment for application development. A
PC is connected to the testbed via SHARC Links for hardware test and verification of the
SHARC-based APU boards.

4.1.1 Arithmetic Processing Unit Development

The first implementation of the EHPSCS two-level multicomputer is the Arithmetic Processing
Unit (APU). The APU module utilizes the Analog Devices

ADSP-21060/21062 single-chip Digital Signal Processor (DSP) as the application processor.
This Super Harvard ARchitecture Computer (SHARC) is a 32-bit processor optimized for signal
processing applications. The LANai from Myricom is used for the network controller function
on the APU which implements the Myrinet switched network. As shown in Figure 10, the
design consists of two identical processing nodes of four ADSP-2106x DSPs and the Myrinet
LANai providing 960 MFLOPS peak processing throughput. The two processing nodes are
connected through the Myrinet via an on-board 8-port crossbar switch.

APU FEATURES
960MFLOPS Peak
640MFLOPS Sustained
SAN Standard Myrinet
ports
128MB total DRAM
Typical Power = 35W @ 5V
6U x 160 form factor

MYRINET
SAN Connector

MYRINET
SAN Connector

8MB x 32
DRAM

8MB x 32
DRAM

8MB x 32
DRAM

8MB x 32
DRAM

MYRINET
8 PORT
SWITCH

XBAR8.1.1

MYRINET
8 PORT
SWITCH

XBAR8.1.1

DSP / LANai
INTERFACE

DSP / LANai
INTERFACE

LANai 4.2
LANai 4.2

ADSP21062
Rev. 2.0

ADSP21062
Rev. 2.0

LOCAL BUS

ADSP21062
Rev. 2.0

ADSP21062
Rev. 2.0

ADSP2106x
Rev. 2.x

ADSP2106x
Rev. 2.x ADSP2106x

Rev. 2.x

ADSP2106x
Rev. 2.x

256K x 32
SRAM

256K x 32
SRAM

ADSP2106x
Rev. 2.x
ROOT

ADSP2106x
Rev. 2.x
ROOT

FLASH
EPROM
512K x 8

FLASH
EPROM
512K x 8

CSR
CSR

R
O
O
T

B
U
S

DSP / LANai
INTERFACE

DSP / LANai
INTERFACE

LANai 4.2
LANai 4.2

ADSP2106x
Rev. 2.x

ADSP2106x
Rev. 2.x

LOCAL BUS

ADSP2106x
Rev. 2.x

ADSP2106x
Rev. 2.x

ADSP21062
Rev. 2.0

ADSP21062
Rev. 2.0 ADSP21062

Rev. 2.0

ADSP21062
Rev. 2.0

256K x 32
SRAM

256K x 32
SRAM

8MB x 32
DRAM

8MB x 32
DRAM

8MB x 32
DRAM

8MB x 32
DRAM

Figure 10. EHPSCS Arithmetic Processing Unit Block Diagram

The EHPSCS APU module utilizes a 6Ux160 VME form factor platform for printed circuit
board structure. The board is shown in Figure 11. Each processing node contains up to 64 MB
of DRAM and 1 MB external SRAM. The board has link port connectivity and JTAG access for
testability as well as COTS software tool support. The SHARClinks and Myrinet ports run out

18

of high-density, 235-pin connectors, which provide a high degree of I/O capability to the
backplane for flexible, high-performance applications. For more detail on the functionality and
operation of the APU board, please refer to the attached Hardware Description Document for
High Performance Scalable Computing Arithmetic Processing Unit Revision 1.

HPSC APU Module

Figure 11. EHPSCS Arithmetic Processing Unit

The APU module was successful in demonstrating and validating the two-level multicomputer
architecture and providing a software development testbed. A suite of SHARClink-based
confidence tests were developed to verify the hardware in an automated fashion using the
Arithmetic Processing Unit Test Procedure, which is attached to this document. These tests
allowed some in depth exercise of the APU hardware. This exercise revealed a subtle fault at 40
MHz operation that could be corrected with a performance increase in the LANai’s local bus.
Myricom cooperated with Sanders in determining the source of the failure and enhanced the
local bus drivers in a respin of the LANai die.

4.1.2 EHPSC Backplane Development

The SHARC-based portion of the APU design was derived from a legacy SHARC-based VME
board design developed under Lockheed Martin IRAD. In an effort to leverage COTS
technology and reduce design risk, the original concept of an APU implementation included the
VME64 bus interfaced to the root processor. A custom P2 backplane was investigated to provide
Myrinet connectivity as well as link port and JTAG connectivity. The SHARC links were used
extensively in the legacy design for test and interprocessor communication. These were included

19

in the APU design to reduce test and integration time while working with the new Myrinet. It
soon became evident that the VME standard on P2 could not support the quantity nor signal
integrity necessary for these I/O requirements. With the addition of high-density, impedance-
controlled backplane connectors to the APU, the VME bus was no longer necessary and was
removed from the design concept. Thus, a custom backplane mainly consisting of redundant
Myrinet connectivity and link port connectivity was required and developed. The backplane
provides the high bandwidth and signal integrity as well as a bridge to the COTS VME
backplane resident in the same chassis. It retains the VME standard board-to-board pitch and
compatibility with standard chassis.

The major backplane connectivity is shown in Figure 12 and Figure 13. Each arrow in Figure 13
represents a bidirectional Myrinet port between an APU module and an MTEM module.
Similarly, each arrow in Figure 12 represents a bidirectional link port between DSPs. Note that
Figure 12 shows only board to board link connectivity. The on-board connectivity is not
represented.

Sharc
A4

Sharc
Root

SLOT 1

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 2

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 3

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 4

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 6

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 7

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 8

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 10

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 11

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 12

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Sharc
A4

Sharc
Root

SLOT 13

Sharc
A3

Sharc
A2

Sharc
A1

Sharc
B1

Sharc
B2

Sharc
B3

Sharc
B4

Figure 12. EHPSCS Testbed Backplane SHARClink Connectivity

Recent progress has been made in the industry standardization effort of Myrinet System Area
Network (SAN) connections. Midway through the EHPSCS program, Myricom addressed the
standardization approach in two ways. The first was a Myrinet standard connector/cable
definition that supports two bidirectional SAN ports. These offer board-to-board cable
connectivity within a chassis, most commonly via front panel connectors. The second was an

20

industry draft standard for Myrinet SAN links on VME P0. This draft standard defines Myrinet
connectivity supporting two bidirectional SAN ports over the VME P0 connector. This draft is
Myrinet-on-VME Protocol Specification Draft Standard, VITA 26-199x, Draft 0.5 and can be
viewed at http://www.vita.com/vso/draftstd/myri-vme-d05.pdf, a copy of which is attached to this
document. The front panel cable/connector was implemented on the APU, Rev. 1.1.

In support of the P0 draft standard, CSPI Inc. has since offered standard products for backplane
overlay modules that plug into the P0 connector across four slots of a VME backplane to provide
Myrinet switching among all eight ports. Refer to http://www.cspi.com/multicomputer/2600tech.htm for
a detailed description of the use of this standard and the backplane overlay module.

4.1.3 Myrinet Topology Expansion Module Development

The Myrinet Topology Expansion Module (MTEM) was developed in cooperation with the ACP
program as a means to increase communication bandwidth among APU cards, to provide
network redundancy within the testbed, and to provide network protocol conversion to a LAN to
extend the system interconnect beyond a single cluster of APU modules.

The MTEM board consists of two 8-port crossbar switches that switch 13 Myrinet SAN ports,
one from each APU and two from the other MTEM via the backplane, and three MI protocol
converters. The testbed supports two MTEM modules. These modules provide the network
redundancy as each provides switching to all 11 APUs in a testbed. Figure 13 is a
comprehensive diagram showing all testbed Myrinet connectivity between the 11 APU boards
and the two MTEM boards. It includes the connectivity among the backplane, within the
MTEMs, and within the APUs. All arrows in the figure represent Myrinet SAN ports.

CLUST
A

0 1

4

5

2

3 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

5

4

3

2 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

4

5

2

3 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

5

4

3

2 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

4

5

2

3 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

5

4

3

2 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

4

5

2

3 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

5

4

3

2 CLUST
B

XBAR
8.1.1

CLUST
A

0 1

4

5

2

3 CLUST
B

XBAR
8.1.1

XA1 XA2 XA3 XA4 XA6 XA7 XA8 XA10 XA11 XA12
CLUST

A

0 1

5

4

3

2 CLUST
B

XBAR
8.1.1

XA13

XBAR 8.1.1 XBAR 8.1.1

1 2 3 4 5

6 1

2 3 4 5

0

7

MI2.2

MI2.26

0MI2.2

7

XBAR 8.1.1 XBAR 8.1.1

1 2 3 4 5

6 1

2 3 4 5

0

7

MI2.2

MI2.260MI2.2

7

XA9

XA5

TO PORT A

PORT A

PORT B

TO PORT B

To
backplane

To
backplane

To front
panel

To
backplane

To front
panel

To
backplane

MTEMMTEM

MTEMMTEM

APUAPU APUAPU APUAPU APUAPU APUAPU APUAPU APUAPU APUAPU APUAPU APUAPU APUAPU

1

5

4

3

CLUST
B

XBAR
8.1.1

CLUST
A

0

2

Figure 13. EHPSCS Testbed Myrinet Connectivity

21

The MTEM boards provide a peak cross-sectional LAN bandwidth into and out of the testbed of
1.92 Gbytes/sec, which facilitates the testbed-to-testbed scalability of the EHPSCS architecture.
The MTEM board is shown in Figure 14.

Figure 14. EHPSCS Myrinet Topology Expansion Module

4.1.4 Distributed Architecture Resource Controller Development

The Distributed Architecture Resource Controller (DARC) is a Myrinet control program that
implements the network protocols established for the embedded EHPSCS system. The DARC is
cross-compiled from C source code on a host Unix development platform and loaded onto an
embedded network of LANai processors via a host Myrinet interface card. The interface card
contains a LANai that is loaded with a DARC image using tools on the host. The LANai on the
host interface card is called the root. The embedded network LANais are booted from ROM
when the network nodes are powered up. The network LANais execute a boot loader that
receives and executes a DARC program image from the network. The DARC program images
are distributed onto the network nodes via the host node’s root LANai.

Every unique type of node in the embedded EHPSCS system will receive and execute a unique
DARC program image. For example, the SUN host node executes the SUN-DARC program and
the APU processor node executes the APU-DARC program. The back-end portion of the DARC
that interfaces to the resources on a node is what makes each DARC unique to a node type. The
front-end portion of the DARC that interfaces to the Myrinet implements a common EHPSCS
packet communication protocol. A top-level block diagram showing the software components of
the DARC software is illustrated in Figure 15.

22

Internal
Node

Interfaces

Myrinet
Interface

Data Set
Controller

(DSC)

Resource
Controller

(RC)

Network
Controller

(NC)

Runtime Services
(RTS)

Figure 15. DARC Software Top-Level Block Diagram

The DARC functionally decomposes into four primary software components: the Network
Controller (NC), the Resource Controller (RC), the Data Set Controller (DSC), and the Runtime
Services (RTS). The RTS is the underlying software that handles boot loading, context
switching, memory management, and hardware interface drivers. The NC, RC, and DSC are
users of the RTS.

The NC is responsible for both input packet processing and output packet processing. The NC
uses the RTS to send and receive packets on the Myrinet. The NC decodes incoming packets as
either resource control messages or data set messages and passes the messages to the RC and
DSC, respectively, where the messages are decoded and processed. Output messages
constructed by the RC and DSC are passed to the NC where they are constructed into Myrinet
packets and transmitted.

The RC is responsible for handling resource control messages. The RC uses the RTS to interface
to the internal node interfaces and obeys the hardware and software protocols established for
those interfaces. Resource control services include boot loading, program loading, data loading,
data extraction, resource debugging, etc.

The DSC is responsible for handling data set messages. The DSC also uses the RTS to interface
to the internal node interfaces and obeys the hardware and software protocols established for
those interfaces. The DSC and RC internally interface with each other to arbitrate access to the
shared resources. Data set services include input and output data set construction, queuing, and
notification to local and remote resources. Data sets and Data Synchronization Queue (DSQ)
data flow are described in detail in Section 4.1.5.

In order to fully understand the structure and execution environment of a DARC program on an
EHPSCS node, it is helpful to describe the DARC by a specific example. Currently, two DARC
implementations exist. The SUN-DARC, which executes on a host node, and the APU-DARC,
which executes on a processor node. The interface to the SUN-DARC from an application
program (resource) executing on a SUN is documented in the SUN Resource Network Interface
Component Specification, which is attached to this document. The interface to the APU-DARC
from an application program (resource) executing on an APU is documented in the APU
Resource Network Interface Component Specification, also attached to this document.

23

4.1.5 Data Synchronization Queue Development

Data Synchronization Queues (DSQ) is a data-flow synchronization model for real-time parallel
processing. It is implemented within the DARC runtime software, forming the back-end to an
embedded EHPSCS Myrinet node. In an embedded EHPSCS system, the DARC runtime
handles the data flow and DSQ maintains the data structure. The application program distributed
across the compute resources within a node performs the data processing and works on a group
of network data sets.

From the network viewpoint, each compute resource on a processor node has a unique set of
input data sets and output data sets. Data may be scattered from one resource to many, or data
may be gathered from many resources to one. Data scattered from one resource to many
resources is first constructed into a complete data set before transmission. Likewise, data
gathered from several resources into one resource is constructed into a complete data set before
notification to the application executing on the resource. These scatter/gather operations provide
data synchronization between the compute resources.

Additionally, a data set is not notified to the application until the application requests the data,
therefore data sets may be queued. This data queuing provides a buffer between the network and
the application. A different queue will exist for each unique type of data set. The length of a
queue will depend on the memory available on a resource and the worst-case expected latency
that an application may experience before requesting the data. Queue length may be tuned on a
per resource basis and is dependent on the application program.

In DSQ, an application executing on a compute resource is simply a compute engine that
receives data, processes the data, and transmits the results. The compute engine is not concerned
how the data gets there or where it is going to. The compute engine is concerned only that data
structure and timeliness are maintained so that it may process the data in a coherent and timely
manner. All of the parameters that describe the input and output data sets for each resource in a
DSQ application are specified in a pair of input and output parameter tables, one pair per node.
The parameter tables encapsulate all data structure, data timeliness, and network data flow
information.

The parameter tables are constructed by the application programmer and executed by the DARC
at runtime. Parameter tables are created either manually or by an automated visualization tool.
Other tools already exist to load and execute application programs and parameter tables. For
each resource integrated into the EHPSCS system, an RNI specification will exist that specifies
how the resource application program will access the data sets at runtime.

4.1.5.1 Data Sets

A data set represents a single coherent block of data that exists on a single node. It is coherent
both logically and physically. A data set is logically coherent in that it contains a logical
grouping of data for computation by the algorithm resident on the resource. A data set is
physically coherent in that it is bound to a physical address in a single contiguous block of
memory. A data set exists on a node as either an input to or output from the application program
executing on the resources. Figure 16. Data Set Organization is an illustration of the different

24

ways that a data set may be perceived. In all three cases the data set resides at physical memory
location M and is B bytes in length.

Slot 0

Slot S

031

Slot 1

Data Slots

Memory Location = M
Byte Size = B = (Slot 0 byte length) +
 … + (Slot S byte length)

Data Set

Y

Z

X

Data Element
char
short
long
float

complex

Memory Location = M
Byte Size = B = X * Y * Z *
 (bytes per Data Element)

Byte 0

Byte 1

Byte 2

Byte B-1

07
Data Buffer

Memory Location = M
Byte Size = B

Figure 16. Data Set Organization

From an algorithmic viewpoint, a data set comprises an X, Y, and Z component. A single vector
would then be described as {X, 1, 1}, a matrix as {X, Y, 1} and a three-dimensional (3-d) array
as {X, Y, Z}. A single element of a vector, matrix, or 3-d array is described by its element size,
E. The basic minimal addressable unit is an 8-bit byte. A fully constructed data set is presented
to an application on a resource (input data set) or to a resource on the network (output data set)
when all of its data slots have been filled. Data slots will not be filled until the data buffer has
been allocated for use by a data set.

From a network viewpoint, a data set comprises S data slots of variable length with a fixed 32-bit
word width. A data set is partitioned into slots for the purposes of scatter/gather operations.
Each data slot represents a portion of the data set that will be transmitted or received (depending
on whether it is an input or output data set) to or from other network resources. Data slots are
inserted into Myrinet packets that travel the network from resource to resource. A packet
contains the slot data plus packet header information for traversing the Myrinet. The definition
of a data slot actually binds the application’s data to a physical location in resource memory. For
an output data slot, the definition also binds the slot to (1) a trigger condition indicating when the
slot will be transmitted, (2) a physical path through the network, and (3) the data set and data slot
on the receiving resource.

From a hardware viewpoint, a data set is simply a buffer of B bytes of data located at memory
location M. Data buffers are allocated statically at system startup when the parameter tables are
loaded onto each resource. The parameter tables specify only offsets into the data buffers so that
individual slots may be located precisely at runtime, given the static base addresses computed at

25

startup. Typically, the data buffers will be located off the LANai’s E-Bus in a memory, such as a
large DRAM, that is shared with the node’s resources. The parameter tables that point into the
DRAM are typically located off the LANai’s L-Bus in an SRAM that contains the DARC
runtime software.

The DARC runtime software performs two fundamental operations with data sets: data set
instantiation and data set notification. Instantiation is the process of loading parameter tables,
allocating buffers, forming queues, etc. prior to the application’s execution. Notification occurs
during the application’s execution. Notification is the process of filling slots, setting timers, and
presenting complete data sets to the local application or to another resource on the network.
Notification also involves the detection and notification of timeout conditions or misrouted data
slot packets to a designated system controller resource.

The application program may require several different types of data sets to perform its algorithm.
The various parameters that describe a data set type and how it is instantiated and notified are
highlighted below.

Data Set Class A data set is either an input to a resource or an output from a
resource. All data sets for the entire system are classified as
belonging to either the class of input data sets or the class of output
data sets.

Data Set ID Every data set within a class receives a unique ID that is simply an
enumeration starting at 0. The class of input data sets begins at
ID=0 and the class of output data sets begins at ID=0.

Data Set Queue Length This parameter specifies how many data sets buffers will be
allocated for queuing data sets of this type (class and ID). If this
count is exceeded, then a notification will be sent to a designated
system controller resource indicating a data set slot was received but
dropped. This parameter may be tuned to fit the resource’s memory
and the application’s timing.

Data Set Dimensions The logical X, Y, Z, and E dimensions of a data set must be
specified to accurately size and locate the data set buffers during
data set instantiation. These parameters are passed to the application
program during data set notification.

Data Set Partitions A data set is partitioned into a number of variable-sized slots. This
parameter specifies how many slots the data set is partitioned into.
A data set slot (DSS) is identified sequentially starting at a
DSSID=0. Each individual slot will carry its own DSS parameters
as defined below.

Data Set Notifications For input data sets, this parameter indicates which compute
resources located on a node (a processor node may contain several
compute resources) are to receive a completed data set. For output
data sets, this parameter indicates which compute resources must
contribute to an output data set before the data set is transmitted.

26

Data Set Timeout For input data sets, this parameter is used to determine if a data set
has arrived within a given timeout interval. A watchdog clock is
started when the first data slot is received and checked on the arrival
of other data slots. If the data slots have not completely filled the
data set before the timeout interval, then a notification will be sent to
a designated system controller resource indicating a data set timeout
has occurred.

The data set slots are further described by the following parameters:

Data Set Slot ID Every data set slot within a data set receives a unique ID that is
simply an enumeration starting at 0.

Data Set Slot Size This parameter is the number of 32-bit words of data in this slot.

Data Set Slot Offset This parameter is the memory offset into the data buffer associated
with the data slot and data set.

Data Set Slot Routing For output data set slots, the routing parameters specify the number
of resources that will receive this data set slot as well as the Myrinet
route codes required to reach those resources from this resource.

Data Set Slot Notification For output data set slots, the notification parameters specify the
receiving resource’s input data set ID and input data set slot ID that
will receive this output data set slot.

4.1.5.2 Queuing and Synchronization

The discussion to this point has focused on the organization and parameterization of data sets
which are the fundamental DSQ data structure. This section will form data sets into data queues
and provide a data-flow synchronization structure for the queue elements.

Figure 17 shows the composition of a single DSQ. One DSQ will exist for each unique data set
defined in the network application. A single data set is buffered in a data buffer. A group of
data buffers forms a data queue (DQ). A data synchronization table (DST) is associated with
each DQ. All of the parameters that define a data set, data buffer, and data queue are contained
in the DST. The following mathematical notation represents a single data synchronization
queue: DQ + DST = DSQ.

27

Data
Buffer

Data Queue

Data
Synchronization

Table
+ =

Data
Synchronization

Table

Data Synchronization Queue

Data
Buffer

Data Queue

Figure 17. One Data Synchronization Queue

Each DQ, DST, and DSQ may be further classified as belonging to an input (I) class or output
(O) class, resulting in the following notation:

Input queuing and synchronization: IDQi + IDSTi = IDSQi

Output queuing and synchronization: ODQo + ODSTo = ODSQo.

In this notation, i ranges from i=0 to i=N, where N is the total number of input data sets in the
network application and o ranges from o=0 to o=M, where M is the total number of output data
sets in the network application. Remember, a unique data set within the network is classified
first as either an input or output data set and then it is given a unique enumeration number within
its class. Any given node in the network will own a unique group of IDSQ’s and ODSQ’s for the
resources it services.

Figure 18 brings together all of the data structures and terminology defined so far to illustrate the
DSQ runtime environment maintained by the DARC software executing on a node’s LANai
chip. At the Myrinet interface are the input packets that are received by DARC and the output
packets that are sent by DARC. As described earlier, packets contain either control messages or
data messages. The DSTs comprising the parameter tables enter as control messages within
input packets. The data slots comprising the data sets in the data queues enter and exit as data
messages within input and output packets.

28

Output
Parameter Table

ODSQm

ODSQ2

ODSQ1

IDSQn

IDSQ2

IDSQ1 IDQ1

IDQ2

IDQn

IDST1

IDST2

IDSTn

ODQ1

ODQ2

ODQm

ODST1

ODST2

ODSTm

Input
Parameter Table

LANai/DARC

Shared Memory
Resource Interface

LANai E-BusLANai L-Bus LANai L-Bus

Insert RemoveAllocate

Load

Lookup

Load

Lookup

Input
Packet

Output
Packet

Receive Send

Myrinet

Input
Data Set

Output
Data Set

Resource(s)

Remove Insert

Figure 18. DSQ Runtime Environment

Prior to network application execution, all input and output parameter tables are loaded. This
triggers the data set instantiation process where all data buffers are allocated and the queues are
formed. During application execution, as data slots are received and sent, the process of
notification begins. Notification requires the lookup of data set parameters associated with the
current notification transaction. Depending on whether it is an input or output transaction, the
appropriate input or output data structures are referenced.

29

For an input transaction, the input data slot is notified to its IDSQ. If a complete data set is
formed by this transaction, then the data set is notified to the application executing on the
resource. The data set remains queued until the application recognizes its presence and
processes the data. If another input data slot arrives before the previous data set is processed, it
will be buffered in the next available queue position. Error conditions that may occur during
input notification include misrouted data slots, queue full conditions, and timeout conditions. A
misrouted data slot or a queue full condition will result in the data slot being dropped. A timeout
condition will occur if the time from the arrival of the first slot to the nth slot exceeds a timeout
interval specified in the input parameter table. If any of these errors occur, then an error
notification is sent to a designated system controller resource.

For an output transaction, an output data slot is removed from its ODSQ and notified to a remote
resource. An output data slot is not notified to a remote resource until the data set that it belongs
to has been completely assembled on the local resource. If several compute resources on the
local node will be contributing to the output data set, then they must all indicate output data set
availability before a data set will be sent slot by slot to the remote resource(s). New data sets
may be constructed in the output data queues while older partially constructed sets are still in
progress. When an entire output data set becomes available, it is sent one slot at a time to the
remote resource(s). Any queue overflow conditions that may occur will be handled as an error
notification to a designated system controller resource. The remote receivers will detect and
handle any misrouted data slots or timeout conditions as part of their input transaction
processing.

Figure 19 is an illustration of the scatter/gather data flow synchronization that is possible with
DSQ. The network application in this example contains the following: three nodes numbered
from 0 to 2, five resources numbered from 0 to 4, four input data sets numbered from 0 to 3, and
four output data sets numbered from 0 to 3. Resource 0 owns the Output Data Set 0 which is
partitioned into three slots. Output Data Set 0 Slot 0 is sent to Resource 1, Output Data Set 0
Slot 1 is sent to Resource 2, and Output Data Set 0 Slot 2 is sent to Resource 2. This illustrates
data scattering. Data set slots are transferred between nodes as Myrinet packets. Note that node,
resource, and data set numbering have global scope whereas slot numbering has local (data set)
scope.

Resource 2 contains a single Input Data Set 1 that in turn contains a single slot, although it could
contain multiple slots but it is simplified for the illustration. When that slot is filled, Input Data
Set 1 is processed, creating the resulting Output Data Set 2. When Output Data Set 2 is
available, it is sent as a single slot to Resource 5’s Input Data Set 4 Slot 1. Resources 3 and 4
also contribute to Resource 5’s Input Data Set 4. This illustrates data gathering. When all three
slots of Input Data Set 4 are available, then that data set is processed by Resource 5.

30

Node 2

Node 2

Slot 0

Slot 1

Slot 2

Output Data Set 0

Resource 0

Slot 0

Input Data Set 1

Resource 2

Slot 0

Output Data Set 2

Slot 0

Input Data Set 2

Resource 3

Slot 0

Output Data Set 3

Slot 0

Input Data Set 0

Resource 1

Slot 0

Output Data Set 1

Slot 0

Slot 1

Slot 2

Input Data Set 3

Resource 4

Myrinet
Packet

Myrinet
Packet

Myrinet
Packet

Myrinet
Packet

Myrinet
Packet

Myrinet
Packet

Node 0

Figure 19. Scatter/Gather Data Flow Synchronization

Node boundaries are shown in Figure 19 because they are essential for routing Myrinet packets.
EHPSCS module and chassis boundaries are not shown for simplicity, although these boundaries
do affect data flow timing because of changes in Myrinet transmission protocols when crossing a
chassis boundary.

4.1.5.3 DSQ Performance Characterization

In the development and characterization of the DSQ paradigm, Sanders focused on the
improvement of critical real-time system scalability issues. Specifically, the EHPSCS program
sought to improve system program load time, initialization time, data synchronization time,
compute resource efficiency, and total message passing latency over what is typically provided
by commercially available systems. Sanders characterized the testbed performance running
DSQ with respect to these issues.

31

Figure 20 shows the program load process for the testbed. Once the LANai is booted with the
DARC from the node level, a one-time parameter table containing all network connectivity
information is passed to it from the host. Lastly, the resource is loaded with application code.
An important point is that the EHPSCS system does not use an OS on the SHARC resources,
saving loading time of what would typically be 500 KB of code.

LANai

HPSC Testbed

Sun
Workstation

LANai

Cluster of 4 SHARC’s

Power Up Sequence

Load LANai

Load Connectivity

Load Resource
(SHARC’s)

LANai

Cluster of 4 SHARC’s

LANai

Cluster of 4 SHARC’s

Myrinet

Figure 20. EHPSCS Program Load

The characterization data for program loading of the EHPSCS system is shown in Figure 21.
The system scales in program load time with the number of nodes, with load times being
proportionally reduced with the number of hosts contributing to the loading.

Program Load Consists of : -113kbyte Executable file

Nodes HPSC HPSC HPSC
(1 SUN) (2 SUNS) 4 SUNS)

1 0.19 0.19 0.19
10 1.90 0.95 0.76
20 3.80 1.90 0.95
30 5.70 2.85 1.71
40 7.60 3.80 1.90
50 9.50 4.75 2.66
60 11.40 5.70 2.85
70 13.30 6.65 3.61
80 15.20 7.60 3.80
90 17.10 8.55 4.56

100 19.00 9.50 4.75

System Load T im e

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

1 10 20 30 40 50 60 70 80 90 100

N o des

Ti
m

e
(s

ec
on

ds
)

HP S C (1 S un) HP S C (2 S uns) HP S C (4 S uns)

Figure 21. Program Load Characterization

32

The initialization process for the EHPSCS system simply requires an attach between each LANai
and resource. An attach is simply a message passed from the resource to the network interface
controller. This is a fixed time of 266 us, independent of the size of the scalable system, since all
attaches are done in parallel. This is significant in comparison to shared memory systems that
scale in time with the number of resources because of loading and coordination of semaphores
and shared memory buffer names.

Figure 22 describes the data transfer and synchronization process of DSQs on the EHPSCS
testbed. The two key features in the synchronization processes are that 1.) the synchronization
and data information is contained in a single packet for the EHPSCS system and 2.) notification
occurs only once per data set in the EHPSCS system. The result is that the overhead and
synchronization latency times for the EHPSCS system become less significant, compared to data
transfer times, as packets become larger and are pipelined. In a semaphore-based
synchronization system, the synchronization information and the data are transmitted separately
adding a proportional amount of synchronization latency to each packet.

HPSC Synchronization

Resource LANai LANai Resource

Data Sync & Data Data

•Synchronization Information and Data Combined into 1 packet

•Synchronization Information approximately 12 bytes

Figure 22. Synchronization Functional Comparison

The EHPSCS synchronization is performed in the DARC at the network level in the two-level
multicomputer architecture. The resource is oblivious to the operation and is therefore more
efficiently applied to application processing. The number of synchronizations does not affect the
resource utilization. This also accommodates heterogeneous resource OS support. The support
of different resource operating systems provides complete flexibility in hardware, software, and
tool selection for resources. As resources change, the network-level software (DARC) remains.

33

Slot Size Slot Count
(bytes) 1 4 8 16 32 64

4 59.68 87.79 123.92 196.42 340.94 630.51
16 60.77 87.76 123.87 196.38 342.16 632.78
32 61.10 88.02 124.39 198.10 344.40 637.29
64 60.93 88.39 125.92 200.06 348.20 645.59

128 61.49 89.92 127.82 203.80 355.20 662.22
256 62.21 92.51 132.31 211.88 372.00 690.71
512 63.65 96.79 140.21 227.79 401.77 749.79

1024 67.82 109.08 166.74 280.67 508.55 967.93
2048 82.44 144.21 226.33 390.80 721.13 1380.06
4096 118.05 219.65 352.71 620.28 1153.40 2222.01
8192 195.49 371.42 608.17 1079.52 2024.64 NA

16384 347.96 680.23 1121.05 2004.27 NA NA
32768 658.40 1298.09 2152.14 NA NA NA

DSQ Overhead
bytes 4 4096 8096 16384 32768
Tim e usec 51 40 30 26 18

Total Latency Measurements (usec)

Figure 23. DSQ Total Data Transfer and Synchronization Latency Measurements

Figure 23 and Figure 24 show the Total Data Transfer and Synchronization Latency
Measurements for the DSQ running on the APU board. The measurements varied over data slot
size and data slot per data set count. It should be noted that the worst-case overhead latency was
measured at 51 us in the simplest data set case. As the data set becomes more complex, the
overhead latency decreases.

Total Data Transfer and Synchronization Latency
M easurements

0.00

500.00

1000.00

1500.00

2000.00

2500.00

4 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

Slot Size (bytes)

Ti
m

e
(u

se
c)

1 Slo t per D atas et 4 Slots per D atas et 8 Slo ts per Datas et 16 Slo ts per D atas et
32 Slots per D atas et 64 Slo ts per Datas et

Figure 24. DSQ Total Data Transfer and Synchronization Latency Measurements

34

The EHPSCS development recognizes that system complexity is in the data synchronization and
is therefore packaged this away from the compute resources for network communication
efficiency and performance gains, approaching the bandwidth of the network. A user should not
have to compromise system flexibility or scalability to reduce communication latency.

4.1.6 Testbed Benchmark Application Demonstration

A first-generation EHPSCS hardware/software functional testbed using discrete components was
completed in June 1996. The EHPSCS functional testbed provides up to 11 GFLOPS of peak
performance in a single VME chassis using 11 Arithmetic Processing Unit (APU) modules. The
first demonstration of the EHPSCS testbed along with an application demonstration was
completed in late June, 1996. The demo consisted of the processing-intensive Householder
matrix transformation function that is part of the Space-Time Adaptive Processing (STAP)
algorithm. The Householder function was allocated to a parallel SHARC processor node on an
APU module. Real-time sensor data sourcing was simulated by a second node with data routed
through the Myrinet switch network. The successful completion of the application demonstration
validated the EHPSCS functional testbed hardware/software, the software development tools and
environment, and the basic two-level multi-computer architecture concept.

4.1.7 Message Passing Interface Development

Another major goal of the architecture was software scalability and portability. By nature of the
two-level multicomputer, all application code is decoupled from the network communication
code. By developing application code in a standard Application Programming Interface (API),
Message Passing Interface (MPI) for instance, the application code becomes portable from
platform to platform. The obvious advantage of this is that software can be developed in a non-
real-time workstation environment and seamlessly ported to real-time target hardware – in this
case, the EHPSCS Multicomputer Testbed.

An implementation of MPI was incorporated as part of the EHPSCS multicomputer testbed
development in collaboration with the ACP program. MPI is a standard application
programming interface for writing portable and scalable high-performance message passing
based parallel programs in a heterogeneous system. It is highly conducive to performance-
oriented parallel applications and contains a broad scope of functionality. In addition, MPI is
becoming widely accepted in the parallel computing community. The MPI standards forum is
representative of government, industry and academia. The final MPI-1 standard was published
in May 1994 and the MPI-2 standard in July 1997. Sanders is a member of the MPI-RT forum.
The purpose of the MPI-RT forum is to provide extensions to MPI for real-time systems and
resource-constrained systems. Sanders has been a driving force in the MPI-RT forum to define
the resource constraint (RC) standard. The target date for the MPI-RT standard is summer 1998.

The critical design requirements governing the MPI implementation were resource memory
constraints, low latency, and modularity to allow retargeting of code. The implementation
developed is based on the MPI-2 real-time subcommittee definition of an embedded version of
MPI-1.1. The MPI implementation structure consists of three layers; API, Protocol, and
Network. The API provides a portable interface for writing parallel applications. The Protocol
layer manages MPI specific protocols along with flow control and reliability. The Network layer

35

provides MPI packet transport functionality. It also uses a Myricom mapping utility for dynamic
network mapping and EHPSCS-developed software tools for loading and administration.

This modular implementation effectively allows retargeting of code to different architectures in a
limited development time. It also allows for retargeting code to different locations within an
architecture; for example, limited resources in embedded targets. Layers were placed in the
appropriate part of the communication hierarchy on a target-specific basis. For a SUN
workstation, only the low-level network send/receive functionality is placed on the LANai. The
EHPSCS APU has enough SRAM to support MPI implementations because most of the MPI
protocol is pushed to the LANai. For an optical processor application, all the MPI protocol is
pushed into the LANai. Figure 25 shows an implementation specific layering.

 Sun APU LANai

Resource API

 Protocol API

 Network Protocol API

 Network Protocol

LANai Network

Figure 25. Implementation-specific Layering

In conjunction with the MPI implementation, an environmental toolset was developed. These
tools are specified in the EHPSCS MPI Users Reference Guide, section 7.3, and include MPICC,
MPIRUN, MPISETUP, MPINODES, and a SHARC “printf”.

MPICC provides a simple method of compiling MPI programs. Compilation is performed with
the appropriate MPI flags and links to appropriate libraries. MPICC contains options that allow
cross compile for the SHARC and PPC, links to alog profiling libraries, and enabling of SUN
debug execution under gdb or ddd control.

MPIRUN provides a convenient method to run MPI programs. MPIRUN contains options that
allow the user to specify the number of nodes to run, specify the nodes and executables in a
process file, generate a script file instead of running, or run a profiling tool upon program
termination.

MPISETUP and MPINODES provide the user a seamless method of determining the topology of
the network. MPISETUP, in conjunction with a Myricom Myrinet Mapper utility determines the
available nodes and associated routes. In a static network configuration, MPISETUP need only
be run once. MPINODES provides a list of available network nodes.

36

A SHARC “printf” was created to ease application development as well as for MPI
implementation debug. It uses functionality in the MPI library to send printf information to the
SUN for display.

eMPI Timing Status as of 1/21/97Latency (one-way)

0

100

200

300

400

500

600
0 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
96

16
35

2

Message Size (bytes)

Ti
m

e
(u

s)

SRAM (SHARC)

DRAM

DRAM (Cluster)

Data Sets

Normalized to 40MHz
Figure 26. MPI Latency Characterization

eMPI Timing Status as of 1/21/97Bandwidth (Sustained Throughput)

0

20

40

60

80

100

120

140

160

4 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

16
38

0

32
76

4

65
53

2

13
10

68

26
21

40

52
42

84

10
48

57
2

20
97

14
8

Message Size (bytes)

B
an

dw
id

th
 (M

B
/s

) SRAM (SHARC)

DRAM

Data Sets

DRAM (Cluster)

Theoretical

Normalized to 40MHz
Figure 27. MPI Bandwidth Characterization

37

Figure 26. MPI Latency Characterization and Figure 27. MPI Bandwidth Characterization show
the characterization results using MPI on the EHPSCS testbed. The Sanders MPI
implementation provided the proof of concept required to transition EHPSCS technology to
commercial facets. MPI was successfully ported to a “dumb” node and to a two-level
multicomputer consisting of a “smart” node SUN and ADI SHARC based resource constrained
nodes. Generic application porting was relatively seamless. Peak bandwidth for large messages
is good (122 MB/s – 76% of peak 160 MB/s bandwidth). In addition, MPI applications that can
overlap communication and computation perform very well.

However, the implementation does have some shortcomings. End-to-end latency numbers are
somewhat poor (35 us for 0 Byte messages). This is because the control program is resident on
the LANai, which is a performance-limited processor. A faster communication processor is
necessary for improved latency. In addition, the Sanders MPI implementation may not be
interoperable with other MPI implementations. MPI is an API specification, not a protocol
specification. Vendor implementation of MPI is protocol specific.

4.1.8 Advanced Packaging

The EHPSCS architecture is supported by a scalable packaging approach to produce flexible and
cost-effective embedded mission application solutions. For avionics applications for instance, an
implementation is needed that minimizes size, weight, and power (SWAP). In addition to a
standard printed wiring board (PWB), the project has developed advanced scalable packaging
solutions using High Density Interconnect (HDI) MultiChip Module (MCM) process technology
from General Electric Corporate Research and Development (GE CRD).

By their very nature, MCMs reduce size, weight, and power over an equivalent discrete
representation. Size and weight are reduced by the elimination of packaging and PWB board
space. Power is reduced due to the fact that components are driving low-capacitance MCM
traces and die pads rather than PWB traces and package pins. But SWAP reduction comes at a
cost. MCMs have traditionally been very expensive, both in terms of cost/risk and development
time. Most integrated circuit vendor production lines are optimized for packaged part
production, making the cost of handling and testing unpackaged die high. MCMs also require a
development cycle of approximately 6-9 months, which can impact rapid insertion opportunities
of state of the art electronics. The advanced packaging effort under the EHPSCS project
addresses both SWAP reduction for constrained military insertions and improved cost and risk of
MCM applications for EHPSCS users.

Three generations of MCMs were developed for the EHPSCS program. The Embedded DSP
MCM was functionally equivalent to one-half of an APU board and was a 5V design
implemented in standard HDI technology. The DRAM MCM was implemented in MCM-Flex
technology in an attempt to reduce the cost of the module. And lastly, the Low Power DSP
MCM again was functionally equivalent to one-half of an APU board but was a 3.3V design
implemented in a modular fashion in MCM-Flex technology. These are described in detail in the
paragraphs that follow.

38

4.1.8.1 Embedded DSP MultiChip Module Development

The purpose of the 5V Embedded DSP MCM was to demonstrate a modular packaging
architecture that is consistent with the EHPSCS design with a reduction in SWAP for use in
highly constrained applications. The DSP MCM consisted of a single processing node, virtually
identical in functionality to each node on the APU board, four ADSP-21060 SHARC DSPs, 1
MB of SRAM, a LANai network interface, and an eight port crossbar switch. The block diagram
of the DSP MCM is shown in Figure 28.

This advanced packaging exercise produced a DSP processing node with 480 peak MFLOPS in a
3.2” x 2.5” package, providing an impressive 60 MFLOPS/in2 processing density. This is an
increase of a factor of approximately 2.5 over the discrete APU implementation. The 5V DSP
MCM validated the node architecture packaging concept and provided an embedded system
transition path to insertion program users.

MYRINET
8 PORT
SWITCH

1.0/26

MYRINET
8 PORT
SWITCH

1.0/26

ADSP21060
Rev. 1.1

ADSP21060
Rev. 1.1

LOCAL BUS

ADSP21060
Rev. 1.1

ADSP21060
Rev. 1.1

ADSP21060
Rev. 1.1

ADSP21060
Rev. 1.1

ADSP21060
Rev. 1.1

ADSP21060
Rev. 1.1

256K x 32
SRAM

256K x 32
SRAM

DSP / LANai
INTERFACE

DSP / LANai
INTERFACE

LANai 4.0LANai 4.0

5V DSP PROCESSING NODE MCM FEATURES
480MFLOPS Peak, 320 Sustained
3 Available Myrinet ports
2 MByte total internal SRAM, 1MByte shared external SRAM
Typical Power = 16W @ 5V
308 Pin ceramic integral package
Standard HDI Technology

Figure 28. 5V Embedded DSP Multichip Module

This MCM was designed concurrently with the APU Rev. 0 board. The APU served as a
discrete prototype for the MCM before the MCM was actually fabricated, which allowed some
design changes to be incorporated into the MCM before actual fabrication.

This MCM was developed in baseline HDI technology. A side view of this technology is shown
in Figure 29. This technology requires milling on the package for individual die cavities in the
package to achieve planarity across top surface of die after which layers of multilamination are
applied for interconnect. A pictorial description of this process is attached at the end of this
document.

39

INTEGRAL PACKAGE

MULTILAMIINATION HDI
INTERCONNECT LAYERS

I/O PAD

INTERNAL
I/O PAD

SEAL RING Die Die Die Die

PACKAGE WELLED OUT
ON A PER-DIE BASIS

STANDARD HDI LAYERS
OF MULTILAMINATION

AREA CAN BE USED TO STACK
PACKAGED SUBSTRATE, MCM-F

SUBSTRATE, OR DISCRETE DEVICES

Figure 29. EHPSCS 5V Embedded DSP MCM – Baseline HDI side view

HDI technology offers many unique features over other MCM technologies that were used in this
particular implementation. One feature is the ability to attach packaged parts or die directly to
the top of the interconnect layers. Another feature is the reparability of the interconnect. Due to
great demand from the personal computer market for fast SRAM at the time of this development,
it was impossible to acquire the necessary memory for this project in die form. Therefore,
packaged SRAM were soldered directly onto the HDI layer in place of die. In addition, for risk
mitigation reasons, the 3 one-time-programmable PALs used for the SHARC/LANai interface
were buried in the MCM like all the other die, but also had pads brought up to the top layer (with
the packaged SRAM). In the event that the original contents of the PALs needed to be changed
for design functionality, the traces to the buried PALs could be cut, and a new PAL die could be
wirebonded to the top layer. As it turned out, all three PALs did change and new ones were
bonded to the HDI. One of the changes required a trace cut with two jumper wires. Both of
these workarounds were critical to the success of demonstrating the embedded MCM. The
reparability of these modules by GE CRD was impressive. Photos of the depelted and reworked
MCMs are shown in Figure 30.

Figure 30. EHPSCS 5V Embedded DSP MCM

Left: Depelted MCM (no HDI interconnect)
Right: Complete MCM with discrete components

40

Fabrication was completed and testing began on three 5V Embedded DSP MCMs in early 1996.
The modules were tested standalone at GE CRD with confidence tests based on a version used to
test the APU modules. The internal node functionality was verified standalone at 25 MHz. In
all, three MCM units were produced under this prototype effort.

4.1.8.2 DRAM MultiChip Module Development

The 5V DRAM MCM development objective was consistent with the 5V DSP MCM and
included investigation into reduction of the cost of MCM production by using ‘plastic HDI’ or
MCM-Flex (MCM-F) technology. A great deal of the cost of standard HDI technology is in the
series of precision steps necessary to produce a module; the milling of a package on a per-die
type basis and the multilamination process, for instance. MCM-Flex technology is able to use
less expensive interconnect than baseline HDI multilamination. In addition, in the MCM-F
process, the die are bonded directly to the interconnect rather than the interconnect being bonded
to the die as is the case with baseline HDI. This eliminates the need for costly precision milling
in a package to attain planarity across the die surfaces. The DRAM MCM exploited those
features to demonstrate a lower-cost module while retaining the silicon density of standard HDI
technology. A pictorial description of this process is attached at the end of this document. For
more information on the MCM-F process and this MCM in particular, please refer to
http://www.crd.ge.com/csetl/edci/projects/cof/index.html.

This advanced packaging exercise produced a 32 Mbyte asynchronous DRAM MCM. The
module features 0-wait state burst accesses, in-circuit reprogrammability, and parity error
detection. The block diagram is shown in Figure 31.

ODD DRAM BANK
4M x 32

ODD
PARITY

RAM

EVEN DRAM BANK
4M x 32

DRAM
CONTROLLER

EVEN
PARITY

RAM

HIGH DATA
TRANSCEIVER

AND ERROR
DETECTION

LOW DATA
TRANSCEIVER

AND ERROR
DETECTION

EVEN
ADDRESS

ODD ADDRESS

LOW DATA

HIGH DATA

PARITY
ERROR

REPORTING

DSP LOW
DATA

DSP HIGH
DATA

PARITY ERROR
INTERRUPT

DSP
ADD.

DSP
CONTROL

DRAM MCM FEATURES
32MBytes 0 wait state DRAM
Parity error detection
Typical Power = 9.3W @ 5V
308 Pin ceramic integral package
Low cost HDI Flex technology

DRAM MCM FEATURES
32MBytes 0 wait state DRAM
Parity error detection
Typical Power = 9.3W @ 5V
308 Pin ceramic integral package
Low cost HDI Flex technology

Figure 31. EHPSCS DRAM Multichip Module Block Diagram

41

The interconnect used was a double-sided, prepatterned flex with one spin-on layer. The
prepatterned flex is available commercially, while the spin-on layer is a less expensive
interconnect process relative to one layer of multilamination of standard HDI. The monolithic
plastic module was then wirebonded into the same 3.2” x 2.5” ceramic package used for the 5V
embedded DSP MCM. The resulting footprint is 2.2 times smaller in board area than the
equivalent discrete circuitry. The DRAM MCM did not require the package milling necessary in
standard HDI technology, thus reducing processing steps and cost. A side view of this MCM-F
technology is shown in

Figure 32. This module development added low-cost technology to the architecture packaging
concept and supplemented the embedded system transition path to insertion program users.

Die Die DieDie Die Die

SUBSTRATE I/O PADS
2-SIDED PREPATTEREND
FLEX PLUS ONE SPIN-ON LAYER

ENCAPSULATION

INTEGRAL PACKAGE

I/O PAD

SEAL RING

ADHESIVE

FEED THROUGH

WIRE BOND

Figure 32. EHPSCS MCM/Flex Technology

Two MCM substrates were fabricated at the GE CRD facility, one of which was tested
standalone on an IMS tester at GE CRD in June 1996. The DRAM controller design is in-circuit
programmable allowing design changes to be made after the DRAM MCMs were fabricated.
The DRAM MCMs were tested for functional operation based on a 5-cycle latency at 1 MHz.
The operating speed was limited by IMS tester setup. The DRAM functional tests provided
verification of the physical design using MCM-F. A photo of the MCM is shown in Figure 33.

42

Figure 33. EHPSCS DRAM Multichip Module Photo

This development successfully demonstrated DRAM functionality as well as MCM cost
reduction. In addition, the entire DRAM MCM development provided an important lesson
learned. Commercial DRAM products increase in density by a factor of four every 18-24
months. This density increase must be compared to the SWAP savings, development cost, and
schedule of an MCM development. The DRAM MCM development experience produced data
points indicating that constrained applications must be justified by cost and schedule for SWAP
savings compared to similar savings provided by COTS DRAM product cycle advancements.
This experience was rolled into the development of the Low Power DSP MCM.

4.1.8.3 Low Power DSP MultiChip Module Development

The objectives of this effort were to reduce power and to investigate approaches to reduce cost
and increase MCM reuse. This effort began with a proven functional design from the 5V DSP
MCM and discrete APU experience. Power reduction came in the form of transitioning the 5V
DSP MCM to this 3.3V version. Two process steps were taken to accomplish the other two
goals. First, the MCM-F process was used to minimize the interconnect cost. Secondly, the
design was broken up into three modular tiles.

The tile concept served several purposes. By breaking down the whole node design into modular
tiles, the routing complexity of each tile was much simpler than a monolithic MCM and could be
routed in fewer layers. Eliminating the need for spin-on dielectrics or multilamination and

43

routing on a lone double-sided prepatterned flex layer is the lowest cost HDI interconnect. In
addition, the smaller tiles should promote tile-based testing to avoid the high costs of known-
good-die (KGD). Lastly, the modular concept will enhance design reuse in other developments.
A side view of the tile-based MCM-F technology is shown in Figure 34.

INTEGRAL PACKAGE

MULTILAMIINATION HDI
INTERCONNECT LAYERS

I/O PAD

INTERNAL
I/O PAD

SEAL RING

Die Die Die Die Die ADHESIVE

MCM-F TILES

TILE I/O PADS

PLASTIC
ENCAPSULATION

ONE LAYER PRE-PATTERNED
FLEX, 4 LAYERS OF MULTILAMINATION

FEED THROUGH
Figure 34. Tile-based MCM-F Technology Side View

The block diagram of the Low Power DSP MCM is shown in Figure 35. It is functionally
identical to the 5V version completed in 1996, but excluded the Myrinet crossbar switch to
reflect a consistent EHPSCS modular node partition. By nature of the 3.3V version of the
design, power density is reduced by at least 50%. It was divided up into three tiles as shown in
the diagram. It has features similar to the 5V DSP MCM, but with a typical power dissipation of
7.5W.

ADSP21060
Rev. 2.0

ADSP21060
Rev. 2.0

LOCAL BUS

ADSP21060
Rev. 2.0

ADSP21060
Rev. 2.0

ADSP21060
Rev. 2.0

ADSP21060
Rev. 2.0

ADSP21060
Rev. 2.0

ADSP21060
Rev. 2.0

256K x 32
SRAM

256K x 32
SRAM

DSP / LANai
INTERFACE

DSP / LANai
INTERFACE

LANai 4.1LANai 4.1 Myrinet
Ports

SHARC Link Ports

Memory
Expansion

SHARC Link Ports

DSP Tile SRAM Tile Network Tile

3V DSP PROCESSING NODE MCM FEATURES
480MFLOPS Peak, 320 Sustained
2 MByte total internal SRAM, 1MByte shared external SRAM
Typical Power = 7.5W @ 3.3V
308 Pin ceramic integral package
MCM-F Technology

Figure 35. EHPSCS 3V DSP Processing Node Functional Block Diagram

44

During the layout phase of the development, it was discovered that even by dividing the design
into three modular tiles, the routing density of each still surpassed that supported by the low-cost
single layer of double-sided prepatterned flex interconnect. Additional layers of interconnect
were necessary on each tile. The final interconnect for each tile consisted of a layer of single-
sided prepatterned flex and four layers of multilamination. In addition, four layers of
multilamination were required to interconnect the tiles with each other and the I/O pins of the
package. In terms of fabrication costs, the investigation has concluded that the fabrication cost
was increased compared to the 5V DSP MCM due to the need for eight total layers of
multilamination. Only five layers of multilamination were used for the complete 5V Embedded
DSP MCM.

The unanticipated routing complexity on the tiles combined with the learning curve involved in
the tile design resulted in a schedule delay of five months and caused the elimination of MCM
tile testing step as originally planned.

The first lot of MCMs yielded five testable modules in May 1997. A sixth module experienced
irreparable delamination between layers during manufacturing and was not completed. A photo
of the depelted MCM, displaying the 3 tiles, is shown in Figure 36. As testing began, all five
MCMs exhibited similar gross failures. This development did not yield a functional prototype
due to potential process defects and/or bad die in the fabrication and assembly of the MCM
prototype. Complete results and analysis are found in Test Results and Fault Analysis For High
Performance Scaleable Computing 3.3V Digital Signal Processor Multi-Chip Module, Revision -
, which is an attachment to this report.

DSP
Tile

Network
Tile

SRAM
Tile

Figure 36. 3V DSP Processing Node MCM

45

The UUV insertion program utilized the 3.3V DSP node design in discrete form and successfully
demonstrated its functionality and power savings (over 5V version) of at least 50% in November
1997.

This investigation concluded that the tile-based process, based on current double-sided
prepatterned flex interconnect technology, is limited for complex digital designs. This has
resulted in the need for multilamination processing steps and higher interconnect cost in our
design. The cost data exists now to trade off the cost of a tiled design versus the cost of KGD.
Lastly, die product cycles (die size/process changes) may be too short to enable effective reuse of
tiles and may greatly limit the lifespan of a module design.

4.1.9 Technology Transition and Insertion

One of the goals of the EHPSCS program was to enhance the High Performance Computing
technology base. That goal was successfully accomplished when the first insertion testbed was
delivered to the STAP program out of Lockheed Martin in Syracuse, NY in July, 1996. Since
that date, Sanders has delivered 14 testbeds which include 70 APUs and 18 MTEMs to seven
different insertion programs, as listed in Table 1.

Insertion Program APU Deliveries MTEM Deliveries Chassis Deliveries

ACP 29 9 9
STAP 20 4 2
P507 4 1 1
UYS2A 2
UUV 1 1
Others (Internal) 14 3 2

TOTALS 70 18 14

Table 1. EHPSCS Technology Insertion Programs

The insertion programs cover a wide range of applications, some of which are briefly described
in the sections that follow.

In addition to these technology insertion programs, the EHPSCS technology was also licensed to
a commercial vendor of signal processing systems, CSPI. In September 1997, Sanders and CSPI
completed a technology licensing agreement for the design of the EHPSCS APU hardware and
the EHPSCS testbed system software to CSPI. CSPI, using this technology, has announced
products providing up to 16 Analog Devices SHARC DSPs in a single VME 6U slot based on
the EHPSCS technology. Designs incorporating this licensed technology will provide
heterogeneous high-performance multicomputer solutions with leading COTS price
performance. SHARC products based on this technology will be used to further expand CSPI’s
MAP 2000 Series High-Performance MultiComputer product line. Through this licensing
agreement, the EHPSCS program has been successful in meeting the goal of inserting the
technology into the High Performance Computing commercial community.

46

4.1.9.1 STAP Insertion Program

The Space Time Adaptive Processing (STAP) Program is a DARPA-sponsored effort based in
Lockheed Martin Ocean, Radar, and Sensor Systems in Syracuse, NY. The program seeks to
demonstrate and validate the EHPSCS technology for next-generation Airborne Early Warning
radar. The program inserted two EHPSCS testbeds, one adaptive array processor and one signal
processor, into an air-based radar testbed. The adaptive array processor requires some very low
latency communications in the beamformer and therefore takes advantage of the SHARClink
connectivity between APUs in the testbed to enhance the Myrinet for this communication path.
The STAP radar successfully demonstrated clutter and jamming suppression and real-time
rooftop operation in May 1997.

4.1.9.2 AN/UYS-2A Insertion Program

The AN/UYS-2A upgrade is a Lockheed Martin Advanced Technology Labs effort and is jointly
sponsored by the U.S. Navy, the Defense Research Projects Agency's (DARPA) Rapid
Prototyping of Application-Specific Signal Processors Program Office, and DARPA's High
Performance Scaleable Computing (HPSC) Program Office.

The goal of the upgrade is to demonstrate a 15X processing-performance improvement in the
AN/UYS-2A - the Navy's standard signal processor - over existing implementations at one-third
the schedule and cost of the original development. Features include the implementation of a 2-
GFlop Floating Point Commercial Arithmetic Processor (FPCAP) on a Standard Electronic
Module-format E (SEM-E) module, which is set in the AN/UYS-2A. The EHPSCS APU
hardware and software is the basis of the FPCAP design. The UYS2A processor upgrade
FPCAP inserts into the Arithmetic Processor slots (three SEM-E) while retaining all hardware
and software interfaces to the existing UYS2A Enhanced Modular Signal Processor. The
processor is used in the Airborne Low Frequency Sonar (ALFS) for low-frequency sonar active
processing. The order-of-magnitude increase in processing density allows the implementation of
a new class of tracking/correlation algorithms without increasing chassis size or power systems.

The UYS2A program also was responsible for integration of the SPOX-MP operating system on
to the EHPSCS testbed. SPOX-MP provides a processor-independent application program
interface for multiprocessor programs requiring real-time operating system services. Typical
single-processor kernel services provided by SPOX-MP include multitasking, intertask
synchronization (semaphores), intertask communication (queues and mailboxes), and device-
independent I/O interfaces (streams). SPOX-MP extends these services across multiple
processors for multiprocessor semaphores, mailboxes, and streams.

4.1.9.3 ACP Insertion Program

The Advanced Common Processor (ACP) program is a classified research and development
program that integrates a number of emerging technology initiatives aimed at providing an order-
of-magnitude improvement and a cost-effective compute solution for a variety of embedded high
performance scalable computing applications. The ACP program provided synergistic research
and development with the EHPSCS program in the development of MPI and the MTEM module.
The ACP program demonstrates the methodologies required to ensure that evolutionary

47

processing technologies are available for low-cost insertion into today's and tomorrow's ground-,
air-, and space-based embedded signal processing systems. Through the common testbed
platform, the ACP program focused on technology insertions for an expanded set of user
applications, including leading algorithms in image exploitation, optical technology, and network
bridging. There are currently nine testbeds in various ACP sites with several more on order for
the purpose of operational processing later in 1998.

4.1.9.4 UUV Insertion Program

The Unmanned Underwater Vehicle (UUV) program is a DARPA-sponsored research program
within the Signal Processing Algorithms and Application (SPA&A) Directorate of Sanders. The
objective of the UUV program is to implement a scalable high-performance embedded signal
processor for UUV applications such as 3D imaging for forward-looking sonar, side scan sonar,
acoustic comms, and navigation. The program employed the EHPSCS testbed design for the
development of two board types (APU and the Interface Unit) for insertion into a custom form-
factor, torpedo-like shell. UUV demonstrated the system in 1998 and is in the process of final
integration in the custom form factor.

4.1.9.5 P507 Insertion Program

P507 is a classified space application program at Lockheed Martin Astronautics in Denver,
Colorado. The program has developed hardware to channelize fast and wide A/D converter data
into the testbed via Myrinet for processing. A significant amount of work has been done in
virtual prototyping. This resulted in a software testbed that was developed using MatLab,
Netsyn, and GEDAE where functional software testbed models are validated on the hardware
testbed. The program has also developed a “suitcase” testbed to support a single APU module as
a low-cost, portable application development platform alternative to the EHPSCS chassis.

4.2 Software Tools

Under the EHPSCS program, Sanders has been successful in leveraging multiple ongoing
DARPA-sponsored and academia developments and COTS products to provide users with an
effective development environment. The following sections detail the software tools available
for the EHPSCS Multicomputer Testbed.

To facilitate user support, Sanders developed a two-day Software Training Workshop on the use
of the EHPSCS software tools and an application development process on the testbed. The
workshop also includes an overview of the testbed hardware and software technologies
employed with hands-on tutorials on MPI, Nupshot/Paragraph, DSP Libraries, and a sample
application development and compilation on the testbed.

4.2.1 Multiprocessor Debugger

To provide effective debugging capability for multicomputer application development on the
EHPSCS architecture, the Dolphin Interconnect Systems TotalView debugger was adopted.
TotalView is a source-level, multiprocessor debugger commercial product that is currently in use
on several workstation and embedded platforms. It provides typical source-level debugger
support, but across multiple processors. Key multiprocessor debug features include setting

48

breakpoints in multiprogram code, single stepping through the code, viewing the code at either
the source level or assembly level, viewing the values of variables and memory locations, and
setting the values of variables or memory locations. TotalView allows the user to
simultaneously view and control multiple processes. TotalView is designed to be portable to
different platforms by separating the target specific functionality from the core debugger
functionality. Its product structure enables cost-effective adaptation by the EHPSCS project.

The EHPSCS version of TotalView runs on a Sun workstation and communicates to the SHARC
target processors via Myrinet. The process of porting Totalview to the EHPSCS target involves
a detailed model of the SHARC instruction set and a disassembler to convert the SHARC
opcodes to assembly language instructions. Specific challenges involved the support of the
SHARC's delayed branch instructions, which required proper identification and handling.
Models of the SHARC's registers and runtime stack were also required. A set of routines to read
the ADI Common Object File Format (COFF) executables also had to be developed to properly
extract debugging information from the programs being debugged.

The EHPSCS communication message format was extended to provide a low-level
communications protocol that allows TotalView to communicate with the SHARCs and to
control SHARC execution for debug operations. The SHARC software library support was
extended to include functions such as setting breakpoints, handling a breakpoint when it is
encountered during runtime and reading/writing SHARC registers. These new SHARC library
functions can be linked in with a SHARC executable to enable TotalView operations at runtime.

TotalView provides the user with the option of acting as a Sun host for an EHPSCS runtime
session. Command line switches allow the user to specify whether TotalView should load the
Sun SBUS card MCP code and/or the APU MCP and SHARC executables. The user must
provide TotalView with three system configuration files in order for it to run correctly. These
files specify a map of Myrinet network and a mapping of the executable processes to the
processors they should run on. Two of these files, hostdb and routedb, are specified via a system
environment variable and the other is specified on TotalView's command line.

TotalView was used extensively in the development and integration of the software for the
Unmanned Underwater Vehicle (UUV) technology insertion program. This program consisted
of a Sun host application and 52 APU processing nodes cooperating together to reduce data from
a high-resolution sonar array. TotalView was found to be very effective in isolating and
identifying bugs in the APU software, particularly during the software integration process.

For a detailed description of the TotalView debugger and user instructions, see the TotalView
multiprocessor debugger User's Guide. The TotalView HPSC Release Notes are included as an
attachment to this document.

4.2.2 Profiling Tools

The Sanders’ MPI implementation contains various profiling libraries that can be used when
either debugging or tuning the performance of an application. These libraries write profiling
logs that can be read by the Nupshot profiling tools, developed by Argonne National Lab. With

49

the Transpicl tool developed by Lincoln Labs, these log scans be converted for use by the
Paragraph profiling tool.

The MPI implementation has a predefined set of events that gets logged for profiling.
Additionally, the developer may make use of the profiling library to define and log their own
events. The profiling tools provide an excellent means of determining correct connectivity and
load-balancing issues in the target application. Developers use these tools to increase the
performance of their application. The tools can significantly improve productivity with an
effective display of dynamic system behavior of a complex application. Events can be set and
recorded, enabling users to accurately time each portion of their algorithm to analyze
performance bottlenecks and resource utilization/efficiency.

4.2.2.1 Nupshot

The Nupshot program illustrates the performance history of all processors in the network. It is
an updated version of Upshot which is a public domain X Windows-based parallel program
visualization tool developed by Argonne National Laboratory. The data is logged in the Alog
format as described in the Upshot documentation. As shown in the display in Figure 37, the
processors are identified top to bottom along the vertical axis, starting at process 0 and ending at
process N-1. Time is displayed left to right along the horizontal axis. Colored boxes indicate the
various states of a process.

Nupshot correlates the communications transfers so developers can visually see when processors
are intercommunicating and how long it takes for each communication. Each discrete event is
color-coded. This makes it easier for the developer to concentrate on a particular type of event
without re-compiling and re-running the application.

Nupshot
• Public domain X windows based parallel program visualization tool
• Developed by Argonne National Laboratory
• Nupshot, a newer version, is distributed with MPICH
• Performs post-mortem analysis on log files generated by parallel MPICH programs
• Log files are in the Alog format as described in the Upshot documentation.

Figure 37. Nupshot Profiler

50

4.2.2.2 ParaGraph

The ParaGraph analysis tool displays similar information as Nupshot, but uses a more dynamic
approach. The Profiling data may be played back through time, whereas Nupshot provides a
static timeline of when events occurred. Different displays can be used to view the processor
topology and network operations in different ways. ParaGraph provides a visual means of
detecting instantaneous unbalanced loads in a parallelized algorithm, and allows the developer to
determine undesirable effects in the processing timeline. A view of ParaGraph is shown in
Figure 38. ParaGraph Profiler

Lincoln Labs has augmented ParaGraph to include an EHPSCS chassis-specific network
topology. Additionally, Lincoln Labs has created the Transpicl tools to convert Alog files into
PICL format for animation in the ParaGraph tool.

ParaGraph
• An animated visualization tool to analyze the behavior of parallel programs
• PICL and the data file format were developed at Oak Ridge National Laboratory
• PICL execution trace data can be replayed through ParaGraph providing visual animation
• Inputs event data accumulated by the Portable Instrumented Communication Library (PICL)
• Work is currently underway at MIT Lincoln Laboratory to build extensions to ParaGraph for
 visualizing the Advanced Common Processor (ACP) execution as well as translation tools to
 convert Alog files from MPICH programs into PICL format for animation ParaGraph tool.

Figure 38. ParaGraph Profiler

4.2.3 Architectural Simulation and Analysis

In conceptualizing and designing a system, it is important to have various simulation capabilities
to help in making system design decisions; this is particularly true for high performance
multicomputer systems. A performance modeling capability allows the development team to
assess the performance and impact of various architectural design decisions. As part of the
EHPSCS effort, Sanders has developed performance modeling, simulation, and analysis
capabilities using the Ptolemy and RAMP tools.

51

4.2.3.1 Ptolemy

Ptolemy is a software environment developed at the University of California, Berkeley that
supports heterogeneous system simulation and design using several different models of
computation, each implemented in a separate domain. The EHPSCS performance modeling
capability uses the Ptolemy’s Discrete Event (DE) domain as its engine for performance
simulation. This capability has been demonstrated and a paper on the capability was presented at
the 1997 IASTED International Conference on Modeling and Simulation. The paper by Eric K.
Pauer is entitled “High Performance Scalable Computing Performance Modeling Using
Ptolemy”, and is attached to this document.

The DE domain is a discrete-event simulator that uses a model of computation in which tokens
with time stamps, called particles, which represent events, are passed among the simulation
building blocks, called stars. These are shown in Figure 39. Myrinet Performance Modeling
Stars Ptolemy has been developed in C++ using an object-oriented software architecture to
facilitate modularity and extensibility. All of the source code in Ptolemy is freely available via
the World Wide Web, which facilitates adding extensions to the tool. Extensions to the DE
domain, in the form of new stars and particles, were created for the EHPSCS architecture and
Myrinet protocol. This effort leveraged off similar performance modeling work started here at
Sanders under the RASSP program, in addition to the work already done at the University of
California under the Ptolemy project.

Figure 39. Myrinet Performance Modeling Stars

52

The key components in the EHPSCS architecture include data sources (SourceNode), LANai
interfaces (LANai), processing nodes (Node), and Myrinet switches (4/8/16-port Switches). The
stars are behavioral virtual prototypes of the components, as they implement behavioral models
at the appropriate level of abstraction. Each type of star has a group of settable state parameters,
which allow the behavior of the model to be adjusted or fine-tuned as appropriate. In addition to
the new stars, several new particles were developed to model the data blocks passed between the
Nodes and LANais and the various Myrinet data and control packets passed among the LANais
and switches. These new stars and particles, combined with the built-in stars available with
Ptolemy, allow performance simulations of large, complex scalable systems to be modeled for
analysis.

An additional strength of Ptolemy is its support for hierarchical modeling. Groups of stars and
their interconnections can be captured into a single entity called a galaxy. A galaxy facilitates
both reuse and simplifies the structure of complex system models. This hierarchy makes the task
of creating, managing, and simulating large architectures much easier. The previously
referenced IASTED paper provides several examples of this hierarchy.

Figure 40. Simple Myrinet Modeling Example

Using the Myrinet models, the various components are placed and connected to specify a system
architecture. One example is shown in Figure 40. Simple Myrinet Modeling Example All
systems must include at least one SourceNode star, representing the source of data into the
system. Each SourceNode is paired with a LANai star. As a high-level model of a data source,
the Source star generates data blocks of a specified size at a periodic rate. The system also
typically includes many Node stars, each also paired with a LANai star. The Node star models a
processing node at a high-level abstraction, treating the processing taking place on the Node as a
single measurable task. In both cases, the LANai acts as an interface between the Node or

53

SourceNode to the Myrinet network. Lastly, among the LANai stars paired with the Node and
SourceNode stars, there is a network of Myrinet Switch stars, representing the network topology
of the system. There are currently models for four-,eight-, and sixteen-port switches, and
switches with a different number of ports can be easily supported.

In order to more easily view and interpret the results of the simulation, a Gantt tool was
developed. The Gantt tool displays the activity on each resource in rows over time (time is along
the x-axis), shown in Figure 41. Gantt Tool Display of Simple Myrinet Modeling Example
There is a row for each SourceNode generation of data, each LANai transmit activity, each
LANai receive activity, the transmit activity for each port in every switch, the transmit queue for
each port in each switch, and the processing on the node. Thus, most of the stars need several
rows to display their behavior and performance. Rows are not displayed when there is no
activity, but the displaying of rows may be disabled. The various activities have been color-
coded to facilitate viewing. Yellow denotes a start up latency, blue indicates normal transmission
or reception of data, and green indicates processing of data by the node. Problems are shown in
orange and red. Orange indicates that one or more blocks have currently originated in the switch
port and have caused queuing of requests; red is used where switch ports or LANais are idle due
to blocks that occurred somewhere in the current route path. There are also labels containing two
integers on most activities. The first number indicates the data packet’s relative position within
the transmit DST in the LANai where it was transmitted. This first number of the packet label is
different when it is displayed by the receiving LANai, in which case it indicates the relative
index of the data packet in the receive DST. The second integer is a unique global identification
number assigned to the packet. These numbers are assigned sequentially as packets and are
created in a given simulation; no two data packets will have the same number. This identification
number facilitates the tracing of a given packet through the Gantt display from the transmitting
LANai, through the switches, to the receiving LANai.

Figure 41. Gantt Tool Display of Simple Myrinet Modeling Example

54

This capability enhances the ability of the designer to explore many options in order to find the
EHPSCS architecture that best satisfies their system requirements. For more detailed
information on the Ptolemy tool, refer to http://ptolemy.eecs.berkeley.edu.

4.2.3.2 RAMP (Real-time Algorithm Mapper and Performance analyzer)

The Real-time Algorithm Mapper and Performance Analyzer (RAMP) tool was developed by
General Electric Corporate Research and Development, under the funding of Lockheed Martin.
RAMP is a graphical tool for designing multi-processor based systems, which helps in evaluating
the suitability of architectures for implementing algorithms. RAMP provides a methodology and
tools for rapidly developing real-time systems (such as signal/image processors, and avionics)
from reusable hardware and software modules. RAMP supports performance optimization and
software reuse. It has a graphical interface consisting of an algorithm window and an
architecture window. Much like the RASSP architectural trade capability, the user maps the
algorithmic blocks onto the architecture. For more information, refer to “An Architectural Trade
Capability Using the Ptolemy Kernel”, attached to this document. RAMP provides an automatic
routing capability, using a shortest route assignment, for the initial flow of data on the
architecture. It provides the capability to import algorithm topologies exported from Alta’s
Signal Processing Workstation (SPW). One disadvantage of RAMP is that it does not easily
allow the addition of models or modeling at higher or lower levels of abstraction. The cost
functions are also a little constrained as they are not proportioned to the amount of data being
processed. A built-in discrete event simulator is integrated into the tool and provides the
simulation capability for the mapped architecture.

During the initial architecture design phase of the project, RAMP was used to analyze the
network topology for the testbed design. RAMP was also explored as an architectural ‘editor’ to
provide users with a graphical user interface (GUI) for defining a network topology. Although
RAMP cannot model the Myrinet protocol at the desired level of abstraction, it can export this
data to serve as a GUI front end tool for performance simulation under Ptolemy. For more
information on the RAMP tool, refer to http://www.sanders.lmco.com/at/hpcot/ramp/index.html

4.3 ReConfigurable Transport Engine (RCTE)

In the second half of the EHPSCS program, the baseline two-level multicomputer architecture
was extended to specifically address multiple next-generation application challenges. Key
challenges included technology-neutral support and hard real-time performance for wide range
support of high performance applications. The key objective of the RCTE design is to
implement the extended architecture features in a prototype to functionally test and validate the
hardware prototype, and to demonstrate and characterize performance that can be compared to
similar measurements on the LANai-based APU.

4.3.1 RCTE Concept Overview

Key network controller enhancements offered by the RCTE over the APU microarchitecture
include zero-copy network communications overhead, reconfigurable host and network interface
support, and reconfigurable hardware for real-time data format conversions. These offer many
advantages over the LANai based network interface such as a 10x improvement in

55

communication latency, technology neutral support of network interfaces or processing
resources, COTS network processor support, and reconfigurability for application optimization.
The enhancements were derived from lessons learned in the performance, operation, and usage
of the APU-based EHPSCS testbed.

The RCTE concept is shown in Figure 42. The RCTE function decouples the network protocol
interface from the resource, consistent with the EHPSCS architecture approach. That function is
reconfigurable such that different networks and resource technologies can be supported as well
as application specific functionality such as protocol acceleration, data format conversion, or
performance monitoring. This promotes rapid technology insertion by relying on firmware
modifications at most for new resources or functionality.

Network
Protocol Interface

Network
Protocol Interface

Data Movement
&

Synchronization
Processing

Data Movement
&

Synchronization
Processing

Data
Conversion
Processing
(Optional)

Data
Conversion
Processing
(Optional)

ResourceResource

•Protocol transport
•Myrinet, SCI, FC, etc.
•Wire, fiber media

•Data synchronization
•Queue management
•Data extraction
•Performance monitoring
•Unified network kernel

•Data format
conversion (fixed,
float, block float, etc.)

•Data alignment
•Application-specific

•Heterogeneous node
•SHARC, Power PC,
C6x, Adaptive
Computer, CSI, CSRC,
function-specific, etc.

RCTE Function

Network
Fabric

Reconfigurable
Resource
Interface

Reconfigurable
Network
Interface

Figure 42. ReConfigurable Transport Engine Concept

All network data passes directly through the RCTE with zero copies. Messages need not be
copied to network controller memory before transmission onto the network nor into network
controller memory upon reception.

4.3.2 RCTE Microarchitecture

A block diagram of the RCTE network interface is shown in Figure 43. This implementation
incorporates a Myrinet network protocol interface, a Motorola MPC860 PowerPC
microcontroller, and an FPGA-based Data Synchronization/Direct Memory Access (DSE/DMA)
Engine.

Myrinet was chosen as the network protocol to retain compatibility with the existing EHPSCS
testbed. It is implemented with the FI chip from Myricom. The FI has bidirectional, full duplex
support for the Myrinet protocol and a simple FIFO interface.

56

FLASHPowerPC
CPU

SRAM
FI

FO
 In

1/2
FI

FIFO
 O

ut

1/2
FI

DSE/DMA
 Engine

DS RAM

 CR Interface

DMA RAM

From Myrinet To Myrinet

To Compute Node Full Duplex extended I/OFull Duplex extended I/O

ORCA
FPGA

Figure 43. ReConfigurable Transport Engine Network Controller

The DSE/DMA engine was developed entirely in modular VHDL such that support of a different
resource interface or application specific function requires replacement of that module’s VHDL.
This engine was developed with support for a SHARC-based resource as the Compute Node
interface and a hardware acceleration scheme for the Data Synchronization Queue protocol
discussed in Section 4.1.5. The DSE/DMA engine is notified when a data set is received or ready
to be transmitted and, through the use of lookup tables, DMAs the data to its destination on the
resource bus or out to the network. This protocol hardware acceleration, coupled with the zero-
copy architecture, results in a predicted network overhead latency reduction of a factor of 10
over the LANai-based APU. The actual measured results are discussed in Section 4.3.5 The
movement of messages that are not identified as data sets is the responsibility of the network
controller.

The MPC860 microcontroller performs general housekeeping, lookup table management, and the
processing of any non-data set messages. A wealth of COTS support exists for the MPC860 in
the areas of tools, RTOSes, technical support, etc. Sanders reviewed several choices for
emulators and RTOSes and decided on the VisionICE Development System from Embedded
Support Tools Corporation and the pSOS operating system from Integrated Systems, Inc.

Two of these network controllers were implemented on the RCTE motherboard, connected via a
Myrinet crossbar switch as shown in Figure 44. The motherboard is fully compatible with the
EHPSCS testbed. To take advantage of the reconfigurability on the resource side, the resource is
implemented on a daughter card. The PCI Mezzanine Card (PMC) standard was adopted for the
mechanical specification of the daughter card sites to take advantage of COTS resources

57

available in PMC format. A SHARC-based daughter card was developed for the prototype due
to Sanders experience with the processor and the tools and software already in place from the
APU development. The daughter card scheme provides a platform to mix and match resources
with a replacement of the resource interface VHDL module in the DS/DMA engine, greatly
reducing development time and therefore technology insertion time.

EHPSCS Testbed
Compatible

Board Design

8-Port
Switch
8-Port
Switch

RCTERCTE

FI ChipFI Chip

PMC ConnectorPMC Connector

Application
Processor

Daughter Card
Slot 0

Application
Processor

Daughter Card
Slot 0

In Out Control

In Out Control

RCTERCTE

FI ChipFI Chip

PMC ConnectorPMC Connector

Application
Processor

Daughter Card
Slot 1

Application
Processor

Daughter Card
Slot 1

In Out Control

In Out Control

4 External
Myrinet Ports

ADI Quad
SHARC MCM
Daughter Card

ADI Quad
SHARC MCM
Daughter Card

Fibre Channel
PCI

Daughter Card

Fibre Channel
PCI

Daughter Card

Holographic
Memory

Daughter Card

Holographic
Memory

Daughter Card

SAN ConnectorSAN Connector

Adaptive
Computer

Daughter Card

Adaptive
Computer

Daughter Card

Optical
Processor

Daughter Card

Optical
Processor

Daughter Card

Heterogeneous Resource/Network Candidates

PCI
Interface

PCI
Interface

Standard I/F
Target

RCTE Prototype

EHPSCS-compatible
backplane connector

EHPSCS-compatible
backplane connector

Figure 44. RCTE Motherboard block diagram

Conceptually, the RCTE motherboard, populated with Quad-SHARC-based daughter cards, is
the same functionality as the APU board, but with higher network performance and greater
flexibility. Figure 45 below compares the two boards, as well as a flat multicomputer, to show
the improvement in communication latency and resource efficiency from a flat multicomputer to
a LANai-based, two-level multicomputer to the RCTE-based, two-level multicomputer.

58

LANai Network
Processor

Resource

RCTE Network
Processor

ResourceResource

RCTE-based
Testbed

RCTE-based Two
Level Multicomputer

Advantages
• Achieves technology insertion

time of < 6 months
• COTS PCI/PMC resource

compliant
• Zero-copy network latency (10x

reduction in latency)
• Application specific

reconfigurability and acceleration
• Full duplex network operation

I/O

Application

Past/Current

Flat Multicomputer

Advantages
• Low network latency

Disadvantages
• Inflexible
• Inefficient use of resource
• Operating system

dependencies

Current EHPSCS
Testbed

LANai-based Two
Level Multicomputer

Advantages
• Increased processing

throughput efficiency
• Network layer S/W is

resource independent

Disadvantages
• 2-copy network latency
• Custom resource/network

interface

I/O

ApplicationApplication
and I/O

Figure 45. Multicomputer Interface Comparison

For more detailed information on the RCTE and its operation, refer to the ReConfigurable
Transport Engine Technical Specification attachment at the end of this document.

4.3.3 RCTE Hardware

The RCTE module was a prototype developed for the performance characterization and
validation of the key architectural enhancements. Two RCTE motherboards were built as well as
two SHARC-based resource daughter cards. The verification processes for these two assemblies
was performed in parallel. Photos of the two assemblies are shown in Figure 46.

59

Performance Monitor
Test Points

Reconfigurable Interfaces (Computation
Resource & Network Fabric)
Reconfigurable Network Processor

PMC Daughter Card Connectors

Daughter Card Site #1
(Shown Installed)

SHARC Daughter Card

RCTE enables rapid technology refresh cycles at all stages of development

ADI Quad-SHARC MCM

Dual RCTE Myrinet Motherboard
• 2 Network Interfaces On Board
• Resource Support via PMC Daughter

Cards
• 6Ux160 Physical Form Factor

Daughter Card Site #2

Support for
COTS PMC
Standard
Products

•RISC
•DSP
•RC
•I/O
•Etc.

Support for
COTS PMC
Standard
Products

•RISC
•DSP
•RC
•I/O
•Etc.

Figure 46. RCTE Motherboard and SHARC Daughter Card Assemblies

The development of the SHARC daughter card was largely based on the APU design to serve as
a low-risk, consistent resource function to support the RCTE endeavor. The existing debug
monitor software was adapted with minor modification to accommodate the link port
connectivity specific to the ADI SHARC MCM. The hardware design consists of an enhanced
DRAM controller function for the support of synchronous DRAM, deviating from the APU
design. The hardware verification of both daughter cards was completed in November 1997.
As can be seen in Figure 47, the board consists of a commercially available Quad SHARC
MCM, 64 MB of SDRAM, and 512 KB of nonvolatile FLASH memory.

60

ADSP21060ADSP21060

LOCAL BUS

ADSP21060ADSP21060

ADSP21060ADSP21060 ADSP21060ADSP21060

512K x 8
FLASH

512K x 8
FLASH

SDRAM
Controller

SDRAM
Controller

16M x 32
SDRAM

16M x 32
SDRAM

SHARC Link Ports

SHARC Link Ports 3V DSP DAUGHTER CARD PROCESSING NODE FEATURES
480MFLOPS Peak, 320 Sustained
64MB external SDRAM, 2 MByte total internal SRAM
Typical Power = 2.5W @ 3.3V
Commercial Standard PMC form factor
Commercially available Quad-Sharc MCM processing element

ADI AD14060 Quad Sharc MCM

Figure 47. Quad SHARC Daughter Card Functional Block Diagram

As shown in Figure 43, the network data path of RCTE Network Controller is FIFO based,
which reduces communication latency by eliminating copies of network packets into SRAM.
The FIFOs chosen for the Network Controller are 8K words deep to minimize any interruptions
in data transfer on both the resource and network sides.

Both the CPU and the DSE/DMA Engine have access to 128K words of synchronous SRAM.
The DS RAM and DMA RAM are used to store parameter tables for incoming and outgoing data
sets. The CPU also has access to 512K bytes of FLASH memory to store boot code as well as
the FPGA configuration. The CPU is responsible for FPGA configuration on powerup.

Special attention was paid to the separation of three clock domains within the Network
Controller. Separate clocks support the network, the CPU, and the resource. The DSE/DMA
Engine was designed to support a resource clock domain separate from the CPU clock domain to
maximize flexibility and performance. The FIFOs decouple the network clock domain from the
resource clock domain. The separation of clock domains maximizes the performance of each
portion of the Network Controller by allowing them to run at their maximum capacity. The
separation also allows flexibility in the choice of resources.

A series of emulator- and network-based tests were used to verify the hardware functionality of
the RCTE Motherboard. The reconfigurability of the RCTE was emphasized during hardware
verification. Different configurations were developed and used to exercise functions as well as
pinpoint errors in network communication tests. The hardware functionality was ultimately
verified in recognizing and processing data set packets and non-data set packets. A variety of
data sets were constructed, varying in data slot size and data set size, to fully exercise the DSE.

61

This was the basis of the performance characterization of the DSQ hardware acceleration
functionality. The results of the characterization are described in Section 4.3.5.1.

4.3.4 RCTE Software

The software developed for the RCTE under the EHPSCS program was designed to provide a
functional demonstration of the key RCTE features. This demonstration employs a round-trip,
data set transfer scenario between the Sun host and two RCTE SHARC nodes connected via
Myrinet. It verifies the data set handling functionality of the RCTE, which is representative of
the typical operation of this hardware.

For the round-trip demonstration, an ASCII configuration file must be created defining both the
outgoing (i.e., producer) and the incoming (consumer) data sets. The Sun host accepts this
ASCII configuration file and generates all the tables required for driving the RCTE. The Sun
host EHPSCS application begins the demonstration by issuing EHPSCS resource messages to
load the RCTE tables across the Myrinet network. The 860_DARC is the embedded program
that runs in the RCTE’s MPC860 embedded controller. It receives and processes the resource
messages from the Sun EHPSCS application. Once the RCTE tables are loaded in the RCTE
RAM, the Sun EHPSCS application starts the SHARC application by sending another resource
message. The SHARC application produces the data sets and initiates the transfer of the first
data sets. These outgoing data sets are transferred from the first RCTE node to the second RCTE
node. The second RCTE node receives the (now incoming) data sets, processes them, and
transfers them back to the first RCTE node. The second RCTE node receives the returning data
sets, which completes the round-trip demonstration. These processes are shown in Figure 48.
Sun Host Utility Program Static Table Generation, Figure 49. RCTE RAM Table Load,
and Figure 50. Data set Roundtrip

Figure 48. Sun Host Utility Program Static Table Generation

Sharc Application

MPC860 DARC

Host Application

Utility Program

Sun Host

RCTE
Processing
Node

Sharc Application

MPC860 DARC

RCTE
Processing
Node

Static
Table
Generation

62

Figure 49. RCTE RAM Table Load

Figure 50. Data set Roundtrip

Sharc Application

MPC860 DARC

Host Application

Utility Program

Sun Host

RCTE
Processing
Node

Sharc Application

MPC860 DARC

RCTE
Processing
Node

RCTE
Table Load

Sharc Application

MPC860 DARC

Host Application

Utility Program

Sun Host

RCTE
Processing
Node

Sharc Application

MPC860 DARC

RCTE
Processing
Node

Dataset
Roundtrip

I
N
I
T
I
A
T
E

63

The five blocks of software designed for the RCTE are described as follows.

Sun Host Utility program:

This Sun SPARC host resident application is an off-line utility program that has been
100% developed and tested. It is a tool for obtaining user input and generating the
required RCTE data structures for the demonstration scenario. The user provides input in
the form of a text configuration file. The program accepts this text file as input and
outputs the generated RCTE tables in individual binary (and Motorola S-Record
formatted text) files.

Sun Host EHPSCS Application:

This Sun host resident application is linked with a set of modified EHPSCS SUN_RNI
libraries and uses a subset of the SUN_RNI API to send packet messages to the RCTE
via Myrinet. This application loads the RCTE tables and uses the following API
functions:

SLM_init

SLM_RCTE_Write*

SLM_RCTE_Read*

SLM_RSRC_Send

SLM_RSRC_Recv

MMSG_Prog_write

MMSG_Prog_Start

These functions are new additions to the SUN_RNI API for the RCTE. The modified
SUN_RNI libraries implement SLM_RSRC_SEND (much like SML_DEBUG_Write
and SLM_DEBUG_Read) to perform the loading the RCTE Data tables from the Sun
host in to RCTE RAM.

860_DARC - an MPC860 QUICC Embedded Application:

This application executes on the MPC860 and functions as a Myrinet Control Program
(MCP). The embedded application and the RCTE HW together provide the Distributed
Architecture Resource Controller (DARC) functionality in this microcontroller. This
860_DARC:

- Holds the compute resources (SHARC DSPs) in reset state.

- Initializes the RCTE hardware registers.

- Receives resource packets via Myrinet and load the RCTE data tables into RAM.

- Releases the compute resources (SHARC DSPs) from reset and load initial SHARC
boot program.

64

- Receives resource packets via Myrinet and initiate the SHARC DMA to pack and
load the 48-bit SHARC application into SHARC RAM.

- Handles MPC860 interrupts to handle errors and service both SHARC messages in
the 860 FIFO and resource packets from the Myrinet network in the Network input
FIFO.

- Processes messages received from the Myrinet network and SHARC resources.

SHARC Application

This application running on the SHARCs processes incoming and creates outgoing data
sets via handshaking with the RCTE during the demonstration. The SHARCs then
receive an incoming data set notification from the RCTE when the round-trip transfer has
completed.

SHARC RCTE Support

This component was developed to support the higher level SHARC support library by
performing the RCTE specific functions. These functions include handling SHARC
Inter-Processor Communication (IPC) mailbox interrupts, reading the (IPC) mailbox, and
sending RCTE Data Synchronization Engine (DSE) notifications.

All of the software design and implementation is complete. Due to overruns in the hardware
schedule and to the hardware intensive nature of the RCTE, the software remains untested on the
RCTE board. Both the RCTE hardware and performance validation were sufficiently
demonstrated for data sets without the use of the described software.

4.3.5 RCTE Performance

From a performance standpoint, the goal of the RCTE was to improve upon the latency and data
buffering overheads of the LANai-based message passing network architecture and realize
additional performance and resource efficiency for many hard real-time applications. The
performance goal was an order of magnitude reduction in Data Synchronization Queue
communication latency over the existing LANai-based APU. In addition, the RCTE seeks to
demonstrate an improvement in power performance over the APU network controller function.
The following characterization data show Sanders success in meeting these goals.

4.3.5.1 RCTE Latency Performance

Characterization of the latency and DSQ acceleration performance consisted of loading
predefined lookup tables to the Data Synchronization Engine to support a round trip transfer of a
data set. The round trip between Node A and Node B on a single motherboard was bounded by
timestamped messages to mimic and measure a typical send/receive message passing function.
Figure 51 shows the complete message passing used to characterize the latency performance.
These time-stamped packets were then passed on to the Sun host and read for analysis.

65

Sun Host

Node A Node B

Initiation
Dataset

Synchronization message
of Initiation Dataset 1

1

3A

3B

5 4

7

6

3 Dataset
passed on to floorSynchronization

message of 4

Synchronization
timestamp after
reception of 5

Invalid DMA
in response to 5

2

1 Dataset
passed on

to floor

Synchronization
timestamp after
reception of 1

Figure 51. RCTE Message Passing for Characterization

RCTE Synchronization Overhead in 5

TIME

Timestamping
on Node A

Message Transfer time

RCTE Synchronization Overhead

RCTE Notification Overhead

∆ Φ Ω Π

∆
Φ

Ω

Π

1
3 4

5 6
7 8

1

2

Initiation Dataset from Sun to Node A

Notification message - Timestamp
from Node A to Sun

Synchronization to 4. Dataset 4 dumped on floor at Node B

Notification message - Zero length dataset from
Node B to Node A
Synchronization to 6. Invalid DMA to acknowledge
reception of zero length message 6.
Second timestamped message sent on to Sun.

Send variable size dataset from Node A to Node B

Measures two synchronizations, message
passing overhead, and data.

2

On Sun

On Node A

On Node B

3

4

5

6

7

8

Synchronization to 1. Dump Sun data onto floor

Σ Λ

Σ

Λ

DMA setup overhead of 4

DMA setup overhead of 6

Θ

Θ Message Transfer time

Figure 52. RCTE Latency Measurement Timeline

66

The latency measurements were made using one node (Node A) as the timing reference. Figure
52 shows these message transfers on a timeline to visualize the operations being timed. The
communication latency was measured as the time to send a message (4) from Node A, receive
and synchronize (5) at Node B, notify with a message back to Node A, and to synchronize (7)
and notify (8) on the received message back from Node B at Node A. Messages (3) and (8)
contain only a timestamp for a body. Messages (4) and (5) were used to vary data slot and data
set sizes. Message (6) contained no body and only consist of header information. This
configuration easily provides message passing overhead latency measurements while most
closely modeling a send/receive pair. The results of these measurements are shown in Table 2.
Note that in the following paragraphs, Total Latency is defined as the time to transfer a message
from resource A to resource B, including the actual data transfer time. Overhead Latency is
defined as the time to transfer a message from resource A to resource B, excluding the actual
data transfer time. Overhead latency + (message size * 25ns) = Total Latency.

RCTE Total Latency Measurements

Slot Size (Bytes) Slot Count
1 4 8 16 32 64

4 6.68 11.68 21.05 39.85 77.45 152.65
16 6.75 11.95 21.68 41.05 79.88 157.45
32 6.85 12.38 22.45 42.65 83.08 163.88
64 7.05 13.15 24.05 45.88 89.45 176.68

128 7.45 14.75 27.25 52.25 102.25 202.25
256 8.25 17.95 33.65 65.05 127.85 253.45
512 9.85 24.35 46.45 90.65 179.05 355.85

1024 13.05 37.15 72.08 141.88 281.45 560.65
2048 19.45 62.75 123.28 244.25 486.25 970.25
4096 32.28 113.95 225.65 449.05 895.85 1789.45
8192 57.85 216.38 430.45 858.65 1715.05 3427.85

16384 109.05 421.15 840.05 1677.85 3353.45 6704.65
32768 211.45 830.78 1659.25 3316.25 6630.25 13258.25

Table 2. RCTE Total Latency Measurements

67

APU Total Latency Measurements

Slot Size (Bytes) Slot Count
1 4 8 16 32 64

0 N/A N/A N/A N/A N/A N/A
4 59.68 87.79 123.92 196.42 340.94 630.51

16 60.77 87.76 123.87 196.38 342.16 632.78
32 61.10 88.02 124.39 198.10 344.40 637.29
64 60.93 88.39 125.92 200.06 348.20 645.59

128 61.49 89.92 127.82 203.80 355.20 662.22
256 62.21 92.51 132.31 211.88 372.00 690.71
512 63.65 96.79 140.21 227.79 410.77 749.79

1024 67.82 109.08 166.74 280.67 508.55 967.93
2048 82.44 144.21 226.33 390.80 721.13 1380.06
4096 118.05 219.65 352.71 620.28 1153.40 2222.01
8192 195.49 371.42 608.17 1079.52 2024.64 N/A

16384 347.96 680.23 1121.05 2004.27 N/A N/A
32768 658.40 1298.09 2152.15 N/A N/A N/A

Table 3. APU Total Latency Measurements

The most critical piece of data measured on the RCTE was the message passing latency for a 4-
byte, single slot data set (pure overhead latency plus a single cycle – 25ns – of data transfer time
on the network). This measurement on the RCTE was 6.68 us, compared to 59.68 us on the
LANai-based APU – an improvement of 9X, just shy of the predicted results. It is important to
note that the overhead latency of the RCTE is fixed. The overhead latency of the LANai is
dependent on the transfer size of the data. This is due to the two-copy architecture of the LANai.
Based on that, it can be shown that the RCTE overhead latency improvement over the LANai
actually increases as data slot size increases.

As data slot sizes increase and the number of data slots per data set increase, the latency ratio
declines as the LANai’s two-copy architecture is masked by pipelining effects and latency times
become dominated by the data transfer time. Even at the large data slot size in multi-data slot
data sets, the RCTE still shows performance increases over the LANai-based APU. These trends
are shown in the chart in Figure 53.

68

Figure 53. Ratio of APU Total Latency to RCTE Total Latency

Note that the multislot data set measurements for both the RCTE and APU assume streamed
data, which permits pipelining and therefore more efficient data movement on the LANai. In a
real-time system, the application will dictate the data movement, which in all likelihood may not
be a streamed set of data slots. A more likely scenario is a scatter/gather operation where
multiple sources are feeding a single destination with data slots that make up a single data set. In
this case, the realistic comparison between the RCTE and LANai would be represented by the 1
Slot/Dataset set of bars in the back row of the chart above, where messages are unable to be
pipelined. For example, in a gather operation using a 1 Kbyte data slot size, the RCTE would be
an improvement of more than 5X in data transfer times over the LANai.
Focusing on a simple message passing case clearly contrasts the RCTE and LANai performance.
Figure 54. RCTE/APU Latency and Bandwidth Comparison shows a comparison on single
data slot per data set messages. They demonstrate the fixed overhead latency of the RCTE and
the dependence of the APU on data slot size. The bandwidth chart also shows that the RCTE can
reach 50% of the network capacity with a data slot size about ¼ the size of one sent/received by
the LANai.

4 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

64
 S

lo
ts

/D
at

as
et

8
Sl

ot
s/

D
at

as
et

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

APU Total Latency/
RCTE Total Latency

Bytes/Slot

Slots
per

Datas
et

64 Slots/Dataset
32 Slots/Dataset
16 Slots/Dataset
8 Slots/Dataset
4 Slots/Dataset
1 Slot/Dataset

69

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

4 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

Slot Size (bytes)

La
te

nc
y

(u
s)

APU Measured Latency RCTE Measured Latency

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

4 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

Slot Size (bytes)

Th
ro

ug
hp

ut
 (M

B
yt

es
/s

)

APU Measured Throughput RCTE Measured Throughput

RCTE vs. LANai - Latency
1 Slot/Dataset

RCTE vs. LANai - Bandwidth
1 Slot/Dataset

Figure 54. RCTE/APU Latency and Bandwidth Comparison

4.3.5.2 RCTE Power Performance

The other area of potential performance improvement for the RCTE is in the area of power
dissipation. The LANai alone is not sufficient to act as a network controller. The LANai
requires a bank of fast SRAM on its local bus for data buffering and processor code. As can be
seen in Figure 55, the RCTE network controller components do offer a 25% reduction in power
over the LANai-based APU network controller components. To be fair, the APU is a 5V
implementation, while the RCTE is a 3.3V implementation. As the table shows, the UUV
insertion program 3.3V APU network controller components dissipate 33% less power than the
RCTE. This issue must be addressed with additional developments in integrating components of
the RCTE.

70

RCTE Network Interface
Part Num. Manufacturer Description Quantity Typ Pwr Max Pwr Tot Typ Tot Max

FI Myricom FIFO Network Interface 1 1.00 1.00 1.00 1.00
MPC860ENZP40 Motorola 40 MHz MPC860 Micro 1 0.75 1.30 0.75 1.30
AT29LV040A-20TC Atmel 512k x 8 FLASH 1 0.00 0.05 0.00 0.05
MT58LC64K32B3LG-10 Micron 64k x 32 SSRAM 4 0.16 0.34 0.64 1.36
OR2T40A-4BC432 Lucent 40kgate LV FPGA 1 2.53 3.37 2.53 3.37
IDT72V255L15TF IDT 8k x 18 LV sync FIFO 4 0.09 0.33 0.37 1.32

Total 5.29 8.40

APU Network Interface
Part Num. Manufacturer Description Quantity Typ Pwr Max Pwr Tot Typ Tot Max

MYRICOM LANai4.1 Myrinet Interface Chip 1 3.50 3.50
SAMSUNG KM64B1003J8 256K x 4 SRAM 8 0.98 7.80

Total 11.30

3.3V APU Network Interface
Part Num. Manufacturer Description Quantity Typ Pwr Max Pwr Tot Typ Tot Max

MYRICOM LANai4.1 Myrinet Interface Chip 1 1.65 1.65
Motorola MCM6929 256K x 4 SRAM 8 0.50 3.96

Total 5.61

Figure 55. RCTE/APU Power Comparison

5 Summary

In keeping with the industry’s emphasis on COTS products, the EHPSCS program has leveraged
core-enabling technologies, commercial, VLSI device technology, and hardware/software design
tools and standards to develop a scalable, high performance, real-time multi-level message
passing multicomputer testbed. Through the development of a multicomputer tool suite and
advanced packaging techniques, the program has provided the system designer with a scalable,
high performance, cost-effective solution that supports next-generation application processing
requirements and evolving program requirements from prototype to embedded system with
environmentally constrained conditions.

The EHPSCS program has been successful in meeting all of its objectives. Specifically, the
EHPSCS program:

• Analyzed, developed, demonstrated, and characterized a two-level multicomputer
architecture for EHPSCS based on COTS technologies.

• Developed a hardware/software testbed for concept validation. The testbed is supported by a
robust development tool suite including a multiprocessor debugger. The testbed and its
technologies were made available to the High Performance Computing community to
enhance this research technology base.

71

• Demonstrated the performance and scalability of the testbed with multiple, demanding, real-
time algorithms through at least six DoD applications that included, among others, STAP,
SAR, EO and IR processing.

• Transitioned the technology developed under the EHPSCS program to at least five DoD
insertion programs. The technology was also transferred to the commercial community via
the Sanders/CSPI technology licensing agreement. This broadens the technology transfer
opportunity while enabling users with COTS support.

• Developed an advanced packaging concept for environmentally constrained DoD
applications. The advanced packaging effort successfully reduced size, weight, and power of
the architectural realization and explored aspects of reduced MCM cost/risk and reusability.

• Extended the baseline architecture with technology-neutral and hard real-time performance
support for a broad range of next-generation insertion opportunities. The RCTE prototype
demonstrated an order of magnitude reduction in network communication latency over the
EHPSCS baseline.

By using open interface standards and leveraging COTS solutions, the EHPSCS program has
demonstrated cost-effective, high-performance, scalable computing solutions for real-time,
compute-intensive, next-generation military applications. The packaging technologies
demonstrated should also facilitate transferring of the EHPSCS technology for DoD ground, air,
and space-based embedded signal processing systems. The EHPSCS technologies already made
an impact on the High Performance Computing community. Leading DoD, NASA, and COTS
developments that have adopted the EHPSCS technologies include: the Air Force’s Improved
Space Architecture Concept program, NASA’s Remote Exploration and Experimentation
program, and CSPI’s next-generation DSP product.

6 Acronyms

API Application Programmers Interface

APU Arithmetic Processing Unit

COTS Commercial Off The Shelf

DARC Distributed Architecture Resource Controller

DARPA Defense Advanced Research Projects Agency

DMA Digital MicroArchitectures

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DSQ Data Synchronization Queue

FI FIFO Interface Myrinet Integrated Circuit

72

FPGA Field Programmable Gate Array

GE CRD General Electric Corporate Research and Development

GUI Graphical User Interface

HDI High Density Interconnect

KGD Known Good Die

LAN Local Area Network

MCM MultiChip Module

MCP Myrinet Control Program

MI Myrinet Interface Integrated Circuit

MPI Message Passing Interface

MTEM Myrinet Topology Expansion Module

NIC Network Interface Controller

OS Operating System

PMC PCI Mezzanine Card

RCTE ReConfigurable Transport Engine

RISC Reduced Instruction Set Computer

RNI Resource-Network Interface

RTOS Real-time Operating System

SAN System Area Network

SHARC Analog Devices Super Harvard Architecture Computer DSP

SRAM Static Random Access Memory

STAP Space, Time Adaptive Processing

SWAP Size, weight, and power

UUV Unmanned Underwater Vehicle

VLSI Very Large Scale Integrated

73

7 Attachment Listing

The following list of documents is attached.

• An Architectural Trade Capability Using the Ptolemy Kernel

• Arithmetic Processing Unit Resource-Network Interface (APU RNI) Component
Specification

• Baseline HDI MCM Technology Process Flow

• Hardware Description Document for High Performance Scalable Computing Arithmetic
Processing Unit Revision 1, Final Draft

• High Performance Scalable Computing Distributed Architecture Resource Controller
Technical Reference

• High-Performance Scalable Computing for Avionics Applications

• High-Performance Scalable Computing for Real-Time Applications

• High Performance Scalable Computing MPI Users Reference Guide

• High Performance Scalable Computing Performance Modeling Using Ptolemy

• High Performance Scalable Computing Primer

• High Performance Scalable Computing Software Users Manual

• HPSC Software Release Notes for EHPSCS Rev. 1.4

• MCM-F Technology Process Flow

• Myrinet-on-VME Protocol Specification Draft Standard, VITA 26-199x, Draft 0.5, 27
January, 1998

• ReConfigurable Transport Engine Technical Specification, Revision 0.64

• SUN Resource Network Interface (SUN_RNI) Component Specification

• Test Procedure, Arithmetic Processing Unit

• Test Procedure, HPSC Chassis

• Test Procedure, Myrinet Topology Expansion Module

• Test Results and Fault Analysis For High Performance Scaleable Computing 3.3V Digital
Signal Processor Multi-Chip Module Revision –

• Totalview HPSC Release Note

